相对剩余价值矛盾_超额剩余价值_相对剩余价值(43)
假定有一块新地投入耕种,花费120劳动周,只提供330夸特。如果[以前]3夸特的价值等于1镑,330夸特就等于110镑。现在一夸特等于2日2+(2/11)小时,以前只等于2日。以前一夸特的价值是6+(6/9)先令即6先令8便士,现在(因为一镑等于6日)是7先令3便士1+(1/11)法寻。现在一夸特要按它的价值,并在实现价值时也提供5/9先令地租,它就必须比以前贵7便士1+(1/11)法寻。较好土地上生产的小麦价值,在这里低于最坏土地上生产的小麦价值;如果这种最坏土地按照略好一点的土地,即提供地租的土地所生产的一夸特的价格它的产品,那末它就低于产品的价值而按照产品的平均价格,也就是按照最坏土地能提供10%普通利润的那种价格产品。因此,这种土地可以耕种,并给资本家提供普通平均利润。
在两种情况下,最坏土地在这里除了提供利润外,还会提供地租。
第一,如果一夸特小麦的价值高于6+(6/9)先令(由于需求增长,一夸特的价格可能高于6+(6/9)先令,即高于它的价值,但我们不研究这种情况;6+(6/9)先令,也就是早先最坏的耕地得以提供10镑地租的一夸特小麦价格,等于这块提供非级差地租的土地上生产的小麦的价值),就是说,如果早先最坏的耕地和其他一切土地,为了提供同一地租,相对地说比较不肥沃,以致它们的产品价值更加高于它们的平均价格和其他商品的平均价格。因此,新的最坏土地不提供地租,不是由于它贫瘠,而是由于其他地段相对的肥沃。提供地租的最坏的耕地,同投入新资本的新等级土地相比,则提供一般地租,即非级差地租。从提供地租的最坏土地上得到的地租不高于它现有的水平,正是因为这种提供地租的土地肥沃。
假定除了最后的提供地租的土地以外,还有三个等级的土地。等级Ⅱ(在Ⅰ即最后的提供地租的土地之上)提供的地租比等级多1/5,因为这种土地比等级Ⅰ肥力大1/5,等级Ⅲ提供的地租又比等级Ⅱ多1/5,因为它比等级Ⅱ肥力大1/5;等级Ⅳ也是这样,因为它比等级Ⅲ肥力大1/5。由于等级Ⅰ的地租等于10镑,等级Ⅱ的地租就等于10+10的1/5=12镑,等级Ⅲ等于12+12的1/5=14+(2/5)镑,等级Ⅳ等于14+(2/5)+[14+(2/5)]的1/5=17+(7/25)镑。[25]
如果Ⅳ的肥力减低,从Ⅲ到Ⅰ的地租就会[488]增多,Ⅳ的地租也会绝对增多(但它们之间的比例是否仍然不变?)。这一点可以从两方面来理解。如果Ⅰ比较肥沃了,Ⅱ、Ⅲ、Ⅳ的地租就会相应减少。另一方面,Ⅰ对Ⅱ、Ⅱ对Ⅲ、Ⅲ对Ⅳ的关系,同新加入的、不提供地租的那一级土地对Ⅰ的关系一样。新等级的土地不提供地租,是因为Ⅰ的小麦价值并不高于新土地产品的平均价格。如果Ⅰ比较不肥沃了,Ⅰ的小麦价值就会高于新土地产品的平均价格。这时,新土地也会提供地租。就Ⅰ来说,情形也是这样。如果Ⅱ比较肥沃了,Ⅰ就不提供地租或提供较少的地租;Ⅱ对Ⅲ的关系,Ⅲ对Ⅳ的关系,也是这样。因此,归根到底,这里是一种相反的顺序:Ⅳ的绝对肥力决定Ⅲ的地租;如果Ⅳ还要肥沃一些,Ⅲ、Ⅱ、Ⅰ就会提供较少的地租,或完全不提供地租。由此可见,Ⅰ提供的地租,即非级差地租,是由Ⅳ的肥力决定的,正如新地完全不提供地租,是由Ⅰ的肥力决定的一样。因此,在这里,施托尔希的规律是适用的:最肥沃的土地的地租决定最后的、一般提供地租的土地的地租,[26]就是说,它也决定提供非级差地租的土地和完全不提供地租的土地之间的差额。
因此,第五个等级即新耕地Ⅰ′(和Ⅰ相区别)不提供地租,不是由于它本身贫瘠,而是由于它同Ⅰ比较相对的贫瘠,也就是说,由于Ⅰ比Ⅰ′相对的肥沃。
避开政治不谈