三角公式推导  高中数学(7)
第十四部分 推理与证明
1.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。注:归纳推理是由部分到整体,由个别到一般的推理。②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。注:类比推理是特殊到特殊的推理。⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。注:演绎推理是由一般到特殊的推理。“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结 论---------根据一般原理,对特殊情况得出的判断。二.证明⒈直接证明⑴综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。⑵分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。
2.间接证明------反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。附:数学归纳法(仅限理科)一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:⑴证明当 取第一个值 是命题成立;⑵假设当 命题成立,证明当 时命题也成立。那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。三角公式推导这种证明方法叫数学归纳法。注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;
第十五部分 理科选修部分
1. 排列、组合和二项式定理⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;⑵组合数公式: (m≤n), ;⑶组合数性质: ;⑷二项式定理: ①通项: ②注意二项式系数与系数的区别;⑸二项式系数的性质:①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;③ (6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
2. 概率与统计⑴随机变量的分布列:①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;②离散型随机变量:X x1 X2 … xn …P P1 P2 … Pn …期望:EX= x1p1 + x2p2 + … + xnpn + … ; 方差:DX= ;注: ;③两点分布: X 0 1 期望:EX=p;方差:DX=p(1-p).P 1-p p 4 超几何分布:一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。称分布列X 0 1 … mP … 为超几何分布列, 称X服从超几何分布。⑤二项分布(独立重复试验):若X~B(n,p),则EX=np, DX=np(1- p);注: 。⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。三角公式推导⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;(6)正态曲线的性质:①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;5 当 一定时,6 曲线随 质的变化沿x轴平移;7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;越小,曲线越“高瘦”,表示总体分布越分散。注:P =0.6826;P =0.9544P =0.9974。
露出一个明白人的xx