您现在的位置:首页 > 教案格式 > 正文

一个二次函数它的对称轴 初三数学试卷及答案 2015年九年级数学上期末试卷(附答案)(4)

2017-12-31 07:10 网络整理 教案网

考点:根的判别式.??分析:根据判别式的意义得到△=(-4)2-4a×3=0,然后求解即可.解答:解:根据题意得△=(-4)2-4a×3=0,解得a=.故答案为.点评:本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.

考点:二次函数图象与系数的关系.??专题:压轴题.分析:由开口向下知道a<0,由与y轴交于负半轴得到c<0,然后即可判断ac的符号;由当x=1时,y>0,即可判断a+b+c的符号;由当x=-2时,y<0,即可判断4a-2b+c的符号;由开口向下知道a<0,由-<1可以推出2a+b<0;由开口向下知道a<0,->0可以推出2a与b的符号,即可确定2a-b的符号.解答:解:①∵开口向下,∴a<0,∵与y轴交于负半轴,∴c<0,∴ac>0;②当x=1时,y=a+b+c>0,∴a+b+c>0;③当x=-2时,y<0,∴4a-2b+c<0;④∵a<0,-<1,∴b<-2a∴2a+b<0;⑤∵a<0,->0,∴b>0,∴2a-b<0.故选A.点评:解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定.8.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE‖BC,将△ADE沿DE翻折后,点A落在点A′处.连结AA′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()??A.????B.3??C.6??D.9

考点:相似三角形的性质.??分析:根据相似三角形的性质,相似三角形面积的比等于相似比的平方,可求S△DEF的值.解答:解:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=.点评:本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.12.如果将抛物线y=x2-3向左平移2个单位,再向上平移3个单位,那么平移后的抛物线表达式是y=(x+2)2.

2016-2017学年江西省上饶市余干县九年级(上)竞赛数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,满分32分)1.有两个一元二次方程M:ax2+bx+c=0,N:cx2+bx+a=0,其中a×c≠0,a≠c;以下列四个结论中错误的是()A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根B.如果方程M有两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1【考点】根的判别式;一元二次方程的解.【分析】利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C与D【解答】解:A、如果方程M有两个相等的实数根,那么△=b2-4ac=0,所以方程N也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2-4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a-c)x2=a-c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选:D2.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9??B.10??C.9或10??D.8或10【考点】根的判别式;一元二次方程的解;等腰直角三角形.【分析】由三角形是等腰三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2-6x+n-1=0即可得到结果;②当a=b时,方程x2-6x+n-1=0有两个相等的实数根,由△=(-6)2-4(n-1)=0可的结果.【解答】解:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2-6x+n-1=0的两根,∴x=2,把x=2代入x2-6x+n-1=0得,22-6×2+n-1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2-6x+n-1=0有两个相等的实数根,∴△=(-6)2-4(n-1)=0解得:n=10,故选B.3.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()??A.??B.??C.??D.【考点】动点问题的函数图象.【分析】首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1<x≤2;③2<x≤3;分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.【解答】解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP??BQ,解y=??3x??x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ??BC,解y=??x??3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9-3x,则△BPQ的面积=AP??BQ,解y=??(9-3x)??x=x-x2;故D选项错误.故选:C.4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac-b+1=0;④OA??OB=-.其中正确结论的个数是()??A.4??B.3??C.2??D.1【考点】二次函数图象与系数的关系.【分析】由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2-4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(-c,0),再把A(-c,0)代入y=ax2+bx+c得ac2-bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=-x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1??x2=,于是OA??OB=-,则可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(-c,0),把A(-c,0)代入y=ax2+bx+c得ac2-bc+c=0,∴ac-b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1??x2=,∴OA??OB=-,所以④正确.故选:B.5.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x??…??-2??-1??0??1??2??…y??…??-11??-2??1??-2??-5??…由于粗心,他算错了其中一个y值,则这个错误的数值是()A.-11??B.-2??C.1??D.-5【考点】二次函数的图象.【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(-1,-2),(0,1),(1,-2)在函数图象上,把(-1,-2),(0,1),(1,-2)代入函数解析式,得??,解得,函数解析式为y=-3x2+1x=2时y=-11,故选:D.6.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()??A.??cm2??B.????cm2??C.????cm2??D.????cm2【考点】二次函数的应用;展开图折叠成几何体;等边三角形的性质.【分析】如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.【解答】解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,??,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6-2x,∴纸盒侧面积=3x(6-2x)=-6x2+18x,=-6(x-)2+,∴当x=时,纸盒侧面积最大为.故选C.??7.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()??A.60°??B.120°??C.60°或120°??D.30°或150°【考点】圆周角定理;含30度角的直角三角形;垂径定理.【分析】作OD⊥AB,如图,利用垂线段最短得OD=1,则根据含30度的直角三角形三边的关系得∠OAB=30°,根据三角形内角和定理可计算出∠AOB=120°,则可根据圆周角定理得到∠AEB=∠AOB=60°,根据圆内接四边形的性质得∠F=120°,所以弦AB所对的圆周角的度数为60°或120°.【解答】解:作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.??8.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()??A.6??B.8??C.10??D.12【考点】切线的性质;一次函数图象上点的坐标特征.【分析】根据直线的解析式求得OB=4,进而求得OA=12,根据切线的性质求得PM⊥AB,根据∠OAB=30°,求得PM=PA,然后根据“整圆”的定义,即可求得使得⊙P成为整圆的点P的坐标,从而求得点P个数.【解答】解:∵直线l:y=kx+4与x轴、y轴分别交于A、B,∴B(0,4),∴OB=4,在RT△AOB中,∠OAB=30°,∴OA=OB=×=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=PA=6-x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选:A.??二、填空题(本大题共8小题,每小题4分,满分32分)9.关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a的取值范围是<a<-2.【考点】抛物线与x轴的交点.【分析】首先根据根的情况利用根的判别式解得a的取值范围,然后根据根两个不相等的实数根都在-1和0之间(不包括-1和0),结合函数图象确定其函数值的取值范围得a,易得a的取值范围.【解答】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1,∴a,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴<a<-2,故答案为:<a<-2.??10.如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为1.??【考点】二次函数图象上点的坐标特征;垂线段最短;矩形的性质.【分析】先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.【解答】解:∵y=x2-2x+2=(x-1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为1.11.如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.??【考点】垂径定理;弧长的计算;解直角三角形.【分析】由OC=r,点C在上,CD⊥OA,利用勾股定理可得DC的长,求出OD=时△OCD的面积最大,∠COA=45°时,利用弧长公示得到答案.【解答】解:∵OC=r,点C在上,CD⊥OA,∴DC==,∴S△OCD=OD??,∴S△OCD2=OD2??(r2-OD2)=-OD4+r2OD2=-(OD2-)2+∴当OD2=,即OD=r时△OCD的面积最大,∴∠OCD=45°,∴∠COA=45°,∴的长为:??=πr,故答案为:.12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2.??【考点】二次函数的应用.【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,表示出总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75即可求得面积的最值.【解答】解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,故饲养室的最大面积为75平方米,故答案为:75.13.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为3或.【考点】点与圆的位置关系;勾股定理;垂径定理.【分析】连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2,则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A=,从而得到满足条件的PA的长为3或.【解答】解:连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,∴CB2+PB2=CP2,∴△CPB为直角三角形,∠CBP=90°,∴CB⊥PB,∴PB=P′B=4,∵∠C=90°,∴PB‖AC,而PB=AC=4,∴四边形ACBP为矩形,∴PA=BC=3,在Rt△APP′中,∵PA=3,PP′=8,∴P′A==,∴PA的长为3或.故答案为3或.??14.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为61°.??【考点】圆周角定理.【分析】首先连接OD,由直角三角板ABC的斜边AB与量角器的直径恰好重合,可得点A,B,C,D共圆,又由点D对应的刻度是58°,利用圆周角定理求解即可求得∠BCD的度数,继而求得答案.【解答】解:连接OD,∵直角三角板ABC的斜边AB与量角器的直径恰好重合,∴点A,B,C,D共圆,∵点D对应的刻度是58°,∴∠BOD=58°,∴∠BCD=∠BOD=29°,∴∠ACD=90°-∠BCD=61°.故答案为:61°.??15.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是8<AB≤10.??【考点】直线与圆的位置关系;勾股定理;垂径定理.【分析】解决此题首先要弄清楚AB在什么时候最大,什么时候最小.当AB与小圆相切时有一个公共点,此时可知AB最小;当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,此时AB最大,由此可以确定所以AB的取值范围.【解答】解:如图,当AB与小圆相切时有一个公共点D,连接OA,OD,可得OD⊥AB,∴D为AB的中点,即AD=BD,在Rt△ADO中,OD=3,OA=5,∴AD=4,∴AB=2AD=8;当AB经过同心圆的圆心时,弦AB最大且与小圆相交有两个公共点,此时AB=10,所以AB的取值范围是8<AB≤10.故答案为:8<AB≤1016.关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判别式;一元一次方程的解.【分析】分别讨论m=0和m≠0时方程mx2+x-m+1=0根的情况,进而填空.【解答】解:当m=0时,x=-1,方程只有一个解,①正确;当m≠0时,方程mx2+x-m+1=0是一元二次方程,△=1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;故答案为①③.三、(本大题共小题,共56分)17.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l‖BC.??【考点】作图—复杂作图;三角形的外接圆与外心;切线的性质.【分析】(1)过点C作直径CD,由于AC=BC,??=,根据垂径定理的推理得CD垂直平分AB,所以CD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l‖BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.【解答】解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.??18.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.??【考点】切线的判定.【分析】(1)连接FO,由F为BC的中点,AO=CO,得到OF‖AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF‖AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.【解答】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF‖AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF‖AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;