您现在的位置:首页 > 教案格式 > 正文

指数函数性质运算法则_指数函数运算性质_指数函数除以指数函数(3)

2017-02-21 19:00 网络整理 教案网

识只有定义,所以显然要利用定义加以证明.而对数定义是建立在指数基础之上的,所以必须先设出指数等式,从而转化成对数等式,再进行证明.

师:掌握了对数恒等式的推导之后,我们要特别注意此等式的适用条件. 生:a>0,a≠1,N>0. 师:(板书)2log28=?2log42=? 生:2log28=8;2log42=2. 师:第2题对吗?错在哪儿?

师:(继续追问)在运用对数恒等式时应注意什么? 生:当幂的底数和对数的底数相同时,才可以用公式 alogaN=N.

师:负数和零有没有对数?并说明理由.

生:负数和零没有对数.因为定义中规定a>0,所以不论b是什么数,都有ab>0,这就是说,不论b是什么数,N=ab永远是正数.因此,由等式b=logaN可以看到,负数和零没有对数.

师:(板书)性质1:负数和零没有对数. 师:1的对数是多少?

生:因为a0=1(a>0,a≠1),所以根据对数定义可得1的对数是零. 师:(板书)1的对数是零. 师;底数的对数等于多少?

生:因为a1=a,所以根据对数的定义可得底数的对数等于1.

师:(板书)底数的对数等于1.

指数函数运算性质_指数函数性质运算法则_指数函数除以指数函数

生:同底数幂相乘,底数不变,指数相加,即am·an=am+n.同底数幂相除,底数不变,指数相减,即am÷an=am-n.还有(am)n=amn;

师:下面我们利用指数的运算法则,证明对数的运算法则.(板书) (1)正因数积的对数等于同一底数各个因数的对数的和.即 loga(MN)=logaM+logaN. (请两个同学读法则(1),并给时间让学生讨论证明.) 师:(分析)我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.

师:(板书)设logaM=p,logaN=q,由对数的定义可以写成M=ap,N=aq.所以 M·N=ap·aq=ap+q, 所以 loga(M·N)=p+q=logaM+logaN. 即 loga(MN)=logaM+logaN.

师:这个法则的适用条件是什么?

生:每个对数都有意义,即M>0,N>0;a>0且a≠1. 师:观察法则(1)的结构特点并加以记忆.

生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算. 师:非常好.例如,(板书)log2(32×64)=? 生:log2(32×64)=log232+log264=5+6=11.

师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化. 师:(板书)log62+log63=?

生:log62+log63=log6(2×3)=1.

师:正确.由此例我们又得到什么启示? 生:这是法则从右往左的使用.是升级运算. 师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用! 师:(板书)(2)两个正数的商的对数等于被除数的对数减去除数的对数.

师:仿照研究法则(1)的四个步骤,自己学习. (给学生三分钟讨论时间.) 生:(板书)设logaM=p,logaN=q.根据对数的定义可以写成M=ap,N=aq.所以

师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?

生:(板书)

师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.