一次函数教案格式(2016年六安金安区事业单位考试一元一次函数教材分析)
一元线性函数基础信息学科教材分析 从数学本身的发展来看,变量和函数的引入标志着数学从初等数学向变量数学的进步。线性函数是初中阶段学习的第一个函数。其研究方法具有普遍性和代表性,为后续研究二次函数和反比例函数奠定了基础。同时,在整个初中阶段,线性函数中存在一维线性方程和一变量线性不等式。三者相互依存、密切相关,也提供了一种补充方程、不等式和函数解的新方法。学生已经学习了一次线性方程和一变量线性不等式。随着知识的准备,用旧知识引入新知识。寻找函数关系是一个难点。教学目标1.知识目标(1)理解线性函数和比例函数的概念,以及它们之间的关系。(2)能够根据给定的条件写出简单的线性函数表达式。 2.Ability Goal(1)体验探索过程的一般规律,培养学生的抽象思维能力。(2)通过从已知信息数学中编写函数表达式的过程培养学生的能力应用能力。3.情感目标(1)培养学生的 通过函数与变量之间的关系,以及线性函数与线性方程之间的关系进行数学思维。(2)经验运用用线性函数解决实际问题的过程,培养学生数学应用能力。教学重点与难点1、重点(1)概念与关系线性函数和比例函数。
(2)根据具体情况给出的信息确定主函数的表达2、难度根据具体情况给出的信息确定主函数的表达教学过程,所有学生对话和活动均逐字记录,但主要教学环节、教师活动、学生活动、设计意图等要转载清楚。)教学圈教师活动以学生行为的设计意图为前提,介绍主题问题1:某春每增加一公斤自然长度为3,弹簧长度y加0.5厘米。(1)当悬挂物的质量分别计算为1公斤、2公斤、3公斤、4公斤、5公斤时,弹簧的长度,汽车行驶距离 x/km 50 100 150 200 300 剩余油箱 y/liter 你能写出 x 之间的关系吗?(y=100-0.18x 或 y=100- 让学生独立完成,有困难的学生老师会给予适当的帮助和指导。
观察两个函数的关系是y=0.5x+3, y=100-0.18x。如果 x 和 y 两个变量之间的关系可以表示为常数 k0) 的形式称为 y 的线性函数(x 是自变量,y 是因变量),那么有什么特别之处呢?尤其是比例函数。左边是因变量 y,右边是自变量 x 的代数表达式。而自变量和因变量的指标都是学生积极思考,找出特征,总结线性函数的固定例子。例 1:写出以下问题中 x 之间的关系,并判断y是否是x的线性函数?是比例函数吗?汽车以60公里/小时的匀速行驶,行驶距离中y(公里)与行驶时间x(小时)的关系;圆y的面积(cm2)及其半径x(厘米);一棵树现在高50厘米,每个月长2厘米,树的高度将是y(厘米) x个月后 例2:我国现行个人工资薪金税征收方式规定:当月收入1600元以下部分不征税,月收入1600元以上2100元以下部分征收5%所得税...如果某人月收入1960元,他应该缴纳个人工资和工资所得税(1960-160)0)5%=18(元)当月收入大于1600元但小于超过2100元,写出应交所得税y(元)与月收入x(元)的关系。某人某月1760年的收入所得税是多少?如果有人在这个月缴纳所得税 19.2 学生根据已有的知识和经验写出 x 之间的关系,对线性函数和比例函数的概念有基本的掌握 上判断分析(1)y=60x,y的线性函数也是x的比例函数;x2,y不是x的比例函数,也不是x的线性函数;(3)y=50+2x,a y 的线性函数,但不是 x 的比例函数。某人某月1760年的收入所得税是多少?如果有人在这个月缴纳所得税 19.2 学生根据已有的知识和经验写出 x 之间的关系,对线性函数和比例函数的概念有基本的掌握 上判断分析(1)y=60x,y的线性函数也是x的比例函数;x2,y不是x的比例函数,也不是x的线性函数;(3)y=50+2x,a y 的线性函数,但不是 x 的比例函数。某人某月1760年的收入所得税是多少?如果有人在这个月缴纳所得税 19.2 学生根据已有的知识和经验写出 x 之间的关系,对线性函数和比例函数的概念有基本的掌握 上判断分析(1)y=60x,y的线性函数也是x的比例函数;x2,y不是x的比例函数,也不是x的线性函数;(3)y=50+2x,a y 的线性函数,但不是 x 的比例函数。y 的线性函数也是 x 的比例函数;x2, y 不是 x 的比例函数,也不是 x 的线性函数;(3)y=50+ 2x,y 的线性函数,但不是 x 的比例函数。y 的线性函数也是 x 的比例函数;x2, y 不是 x 的比例函数,也不是 x 的线性函数;(3)y=50+ 2x,y 的线性函数,但不是 x 的比例函数。
根据给定条件写出简单的线性函数表达式是本课的重点,难度较大。因此,在解决这个问题时,及时引导学生总结学习经验,教会学生掌握“从特殊到一般”的理解规律。问题的方法。依此类推,可找出线性函数关系的一般公式,从而突破教学难点。在学习过程中,教师进行检查和个别指导,关注学生的个性发展。根据学生分析:(1)月收入大于1600小于2100元时,y=0.05(x-1600);(2)当x=1760, y =0.05 (1760-1600)=8(元); (< 据了解,学生可以计算出用户5月份的水费,但是线性函数和比例函数的概念并不明确。应根据学生在课堂上掌握的实际情况,补充适当的练习,特别是对于课堂上可能有问题的学生。我们在这堂课上学到了什么?y=kx+b(k , B 是常数 k0) 的形式,那么 y 称为自变量一次函数教案格式,y 为因变量)。
特别是当 b=0 是一个比例函数。根据已知信息,写出线性函数的表达式,引导学生回忆线性函数和比例函数的概念和关系。板书(主板写字需要留在黑板上)一次性函数1、y=0.5x+3 1、y=60x 1、y= 0.05 (x-1600) 2、y=100-0.18x y=0.05(1760-1600)=8(元)y=kx+ b (k, b 是常数 k0) 3、y=50+2x 3、19.2=0.05(x -1600) x=1984的比例函数学生学习活动评价设计更容易让学生理解一次函数教案格式,作业更好。教学反思如何找到函数之间的关系,这是一个难点,如何更好的解决。说话时列出网格。
教案网123
我就笑笑啦明显是针对新出的6s6sp来更新的那些以前的更新难免会出一些毛病喽