科学家通过数值模拟实验进一步揭示影响季风行为的驱动因子(6)
Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea ice model documentation and software user's manual version 4.1. Tech. Rep. LA-CC-06-012, 675 pp.Google Scholar
Hurtt, G. C., and Coauthors, 2011: Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic change, 109(1–2), 117, .CrossRefGoogle Scholar
Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res., 120, 4718–4748, .Google Scholar
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91(3), 363–376, .CrossRefGoogle Scholar
Lamarque, J.-F., and Coauthors, 2012: CAM-chem: Description and evaluation of interactive atmospheric chemistry in the community earth system model. Geoscientific Model Development, 5(2), 369–411, .CrossRefGoogle Scholar
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, .Google Scholar
Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132(10), 2293–2307, (2004)132<2293:AVLFDC>2.0.CO;2.CrossRefGoogle Scholar
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22(6), 1065–1092, (1983)022<1065:BPOTSF>2.0.CO;2.CrossRefGoogle Scholar
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26(3), 318–329, .CrossRefGoogle Scholar
Matthes, K., and Coauthors, 2017: Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 10(6), 2247–2302, .CrossRefGoogle Scholar
Meinshausen, M., and Coauthors, 2017: Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 10, 2057–2116, .CrossRefGoogle Scholar
Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Technical Memo. 206, 41 pp.Google Scholar
Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the community land model (CLM). NCAR/TN-478 + STR, 173 pp, .Google Scholar
Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an oro-graphic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112(474), 1001–1039, .CrossRefGoogle Scholar
Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227(1), 55–78, .CrossRefGoogle Scholar
Simpson, R. H., and H. Saffir, 1974: The hurricane disaster— potential scale. Weatherwise, 27(4), 169–186, .CrossRefGoogle Scholar
Sun, Z. A., and L. Rikus, 1999: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303, .CrossRefGoogle Scholar
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, (1989)117<1779:ACMFSF>2.0.CO;2.CrossRefGoogle Scholar
Waliser, D., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030, .CrossRefGoogle Scholar
Wang, X. C., and M. H. Zhang, 2014: Vertical velocity in shallow convection for different plume types. Journal of Advances in Modeling Earth Systems, 6(2), 478–489, .CrossRefGoogle Scholar
Wu, G. X., H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13(1), 1–18, .CrossRefGoogle Scholar
Xiang, B. Q., and Coauthors, 2015: Beyond weather time-scale prediction for hurricane sandy and super typhoon Haiyan in a global climate model. Mon. Wea. Rev., 143(2), 524–535, .CrossRefGoogle Scholar
Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21), 3084–3102, (1996)053<3084:ASCPFU>2.0.CO;2.CrossRefGoogle Scholar
Yang, J., Q. Bao, X. C. Wang, and T. J. Zhou, 2012: The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models. Adv. Atmos. Sci., 29(3), 529–543, .CrossRefGoogle Scholar
Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7(1), 1–20, .CrossRefGoogle Scholar
©The Author(s)2019
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
QingBaoEmail authorXiaocongWangLinjiongZhouXiaofeiWuYiminLiuGuoxiongWuKangjunChenSichengHeWentingHuJiandongLiJinxiaoLiGuokuiNianLeiWangJingYangMinghuaZhangXiaoqiZhang1。State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina2。Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina3。University of Chinese Academy of SciencesBeijingChina4。Geophysical Fluid Dynamics LaboratoryPrincetonUSA5。
School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina6。State Key Laboratory of Earth Surface Processes and Resource Ecology/Academy of Disaster Reduction and Emergency Management Ministry of Civil Affairs and Ministry of Education, Faculty of Geographical ScienceBeijing Normal UniversityBeijingChina7。School of Atmospheric SciencesNanjing University of Information Science and TechnologyNanjingChina
又没说要大力推广