科学家通过数值模拟实验进一步揭示影响季风行为的驱动因子(4)
Sperber, K. R., H. Annamalai, I. S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711−2744,
Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic ocean forcing of North American and European summer climate. Science, 309, 115−118,
Wang, B., 1994: Climatic regimes of tropical convection and rainfall. J. Climate, 7, 1109−1118, (1994)007<1109:CROTCA>2.0.CO;2.
Wang, B., and Q. H. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dyn. Atmos. Oceans, 44, 165−183,
Wang, B., Q. H. Ding, X. H. Fu, I. S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711,
Wang, B., J. Liu, H. J. Kim, P. J. Webster, and S. Y. Yim, 2012: Recent change of the global monsoon precipitation (1979-2008). Climate Dyn., 39, 1123−1135,
Wang, X. C., and M. H. Zhang, 2014: Vertical velocity in shallow convection for different plume types. Journal of Advances in Modeling Earth Systems, 6(2), 478−489,
Wu, G. X., and Y. M. Liu, 2000: Thermal adaptation, overshooting, dispersion, and subtropical anticyclone Part I: Thermal adaptation and overshooting. Chinese Journal of Atmospheric Sciences, 24(4), 433−446, (in Chinese with English abstract)
Wu, G. X., H. Liu, Y. C. Zhao, and W. P. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13(1), 1−18,
Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8(4), 770−789,
Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404,
Wu, G. X., B. He, Y. M. Liu, Q. Bao, and R. C. Ren, 2015: Location and variation of the summertime upper-troposphere temperature maximum over South Asia. Climate Dyn., 45(9-10), 2757−2774,
Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21), 3084−3102, (1996)053<3084:ASCPFU>2.0.CO;2.
Zehnder, J. A., 1993: The influence of large-scale topography on barotropic vortex motion. J. Atmos. Sci., 50(15), 2519−2532, (1993)050<2519:TIOLST>2.0.CO;2.
Zhou, L. J., Y. M. Liu, Q. Bao, H. Y. Yu, G. X. Wu, 2012: Computational Performance of the High-Resolution Atmospheric Model FAMIL. Atmospheric and Oceanic Science Letters, 5(5), 355−359,
Zhou, L. J., and Coauthors, 2015: Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7(1), 1−20,
Zhou T. J., B. Wu, and B. Wang, 2009a: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian Monsoon? J. Climate, 22, 1159−1173,
Zhou, T. J., D. Gong, J. Li, and B. Li, 2009b: Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon−Recent progress and state of affairs. Meteor. Z., 18, 455−467,
Zhou, T. J., and Coauthors, 2016: GMMIP (v1.0) contribution to CMIP6: Global monsoons model inter-comparison project. Geoscientific Model Development, 9(10), 3589−3604,
Zhou, X. J., P. Zhao, J. M. Chen, L. X. Chen, and W. L. Li, 2009c: Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Science in China Series D: Earth Sciences, 52(11), 1679−1693,
followshare
Advances in Atmospheric Sciences
August 2019, Volume 36, Issue8, pp 771–778 |
Open Access
Data Description Article
First Online: 03 July 2019
The outputs of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L) model for the baseline experiment of the Atmospheric Model Intercomparison Project simulation in the Diagnostic, Evaluation and Characterization of Klima common experiments of phase 6 of the Coupled Model Intercomparison Project (CMIP6) are described in this paper。 The CAS FGOALS-f3-L model, experiment settings, and outputs are all given。 In total, there are three ensemble experiments over the period 1979–2014, which are performed with different initial states。
The model outputs contain a total of 37 variables and include the required three-hourly mean, six-hourly transient, daily and monthly mean datasets。 The baseline performances of the model are validated at different time scales。 The preliminary evaluation suggests that the CAS FGOALS-f3-L model can capture the basic patterns of atmospheric circulation and precipitation well, including the propagation of the Madden-Julian Oscillation, activities of tropical cyclones, and the characterization of extreme precipitation。 These datasets contribute to the benchmark of current model behaviors for the desired continuity of CMIP。
CMIP6AMIPFGOALS-f3-LMJOtropical cycloneextreme precipitation
按国际法