您现在的位置:首页 > 教案模板 > 正文

科学家通过数值模拟实验进一步揭示影响季风行为的驱动因子(2)

2019-11-18 05:00 网络整理 教案网

这是作者为IPCC CMIP6 世界气候研究计划撰写的两篇论文之一。另一篇论文描述了中科院FGOALS-f3-L模式参加CMIP6 DECK试验中大气模式比较计划(Atmospheric Model Intercomparison Project, AMIP)这一基准试验的模拟数据。

何编说:“我们将在下一步模拟中考虑海气相互作用,因为这也是理解全球季风和相关的地形效应的一个重要因素。我们的最终目标是改进模式对季风行为的模拟,以便更准确地预测季风。”

论文链接:1 2

图:(a)全球陆地表面气温异常的时间序列(单位:K,相对于1951-1980年的异常)。红线表示GISS数据。粗黑线表示三组amip-hist试验的集合平均结果,而三个集合r1i1p1f1, r2i1p1f1, r3i1p1f1分别用三种虚线表示。(b)与(a)同,但为降水(单位:mm d-1)的结果。红线表示GPCC数据。

Abstract:The Chinese Academy of Sciences (CAS) Flexible Global Ocean–Atmosphere–Land System (FGOALS-f3-L) model datasets prepared for the sixth phase of the Coupled Model Intercomparison Project (CMIP6) Global Monsoons Model Intercomparison Project (GMMIP) Tier-1 and Tier-3 experiments are introduced in this paper, and the model descriptions, experimental design and model outputs are demonstrated。 There are three simulations in Tier-1, with different initial states, and five simulations in Tier-3, with different topographies or surface thermal status。

Specifically, Tier-3 contains four orographic perturbation experiments that remove the Tibetan–Iranian Plateau, East African and Arabian Peninsula highlands, Sierra Madre, and Andes, and one thermal perturbation experiment that removes the surface sensible heating over the Tibetan–Iranian Plateau and surrounding regions at altitudes above 500 m。 These datasets will contribute to CMIP6’s value as a benchmark to evaluate the importance of long-term and short-term trends of the sea surface temperature in monsoon circulations and precipitation, and to a better understanding of the orographic impact on the global monsoon system over highlands。

1.Introduction2.Model and experiments3.Technical validation4.Usage notesData availability statementDisclosure statementReference

季风环流的正确叙述是_全球季风环流示意图_全球季风图

Abe, M., A. Kitoh, and T. Yasunari, 2003: An evolution of the Asian summer monsoon associated with mountain uplift−Simulation with the MRI atmosphere-ocean coupled GCM. J. Meteor. Soc. Japan, 81(5), 909−933,

Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78(10), 2197−2214, (1997)078<2197:TNAM>2.0.CO;2.

Bao, Q., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30(3), 561−576,

Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27(5), 1131−1142,

Bao, Q., X. F. Wu, J. X. Li, L. Wang, B. He, X. C. Wang, Y. M. Liu, and G. X. Wu, 2019: Outlook for El Niño and the Indian Ocean Dipole in autumn-winter 2018-2019. Chinese Science Bulletin, 64, 73−78,

Becker, A., P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth System Science Data, 5, 71−99,

Black, E., J. Slingo, and K. R. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Wea. Rev., 131, 74−94, (2003)131<0074:AOSOTR>2.0.CO;2.

Boos, W. R., and Z. M. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463(7278), 218−222,

Boos, W. R., and Z. M. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Scientific Reports, 3, 1192,

Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22(12), 3422−3448,

Campetella, C. M., and C. S. Vera, 2002: The influence of the Andes Mountains on the South American low-level flow. Geophys. Res. Lett., 29(17), 1826,

Cook, K. H., G. A. Meehl, and J. M. Arblaster, 2012: Monsoon regimes and processes in CCSM4. Part II: African and American monsoon systems. J. Climate, 25, 2609−2621,

Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U. S. Geophys. Res. Lett., 28, 2077−2080,

Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901-85. Nature, 320, 602−607,

Gandu, A. W., and J. E. Geisler, 1991: A primitive equations model study of the effect of topography on the summer circulation over tropical South America. J. Atmos. Sci., 48, 1822−1836, (1991)048<1822:APEMSO>2.0.CO;2.

Goddard, L., and N. E. Graham, 1999: Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res., 104, 19 099−19 116,

Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706,

Hahn, D. G., and S. Manabe, 1975: The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci., 32(8), 1515−1541, (1975)032<1515:TROMIT>2.0.CO;2.