等于大于号 HashMap 源码详细分析(6)
回到上面的源码中,我们继续看一下 treeifyBin 方法。该方法主要的作用是将普通链表转成为由 TreeNode 型节点组成的链表,并在最后调用 treeify 是将该链表转为红黑树。TreeNode 继承自 Node 类,所以 TreeNode 仍然包含 next 引用,原链表的节点顺序最终通过 next 引用被保存下来。我们假设树化前,链表结构如下:
HashMap 在设计之初,并没有考虑到以后会引入红黑树进行优化。所以并没有像 TreeMap 那样,要求键类实现 comparable 接口或提供相应的比较器。但由于树化过程需要比较两个键对象的大小,在键类没有实现 comparable 接口的情况下,怎么比较键与键之间的大小了就成了一个棘手的问题。为了解决这个问题,HashMap 是做了三步处理,确保可以比较出两个键的大小,如下:
比较键与键之间 hash 的大小,如果 hash 相同,继续往下比较
检测键类是否实现了 Comparable 接口,如果实现调用 compareTo 方法进行比较
如果仍未比较出大小,就需要进行仲裁了,仲裁方法为 tieBreakOrder(大家自己看源码吧)
tie break 是网球术语,可以理解为加时赛的意思,起这个名字还是挺有意思的。
通过上面三次比较,最终就可以比较出孰大孰小。比较出大小后就可以构造红黑树了,最终构造出的红黑树如下:
橙色的箭头表示 TreeNode 的 next 引用。由于空间有限,prev 引用未画出。可以看出,链表转成红黑树后,原链表的顺序仍然会被引用仍被保留了(红黑树的根节点会被移动到链表的第一位),我们仍然可以按遍历链表的方式去遍历上面的红黑树。这样的结构为后面红黑树的切分以及红黑树转成链表做好了铺垫,我们继续往下分析。
扩容后,普通节点需要重新映射,红黑树节点也不例外。按照一般的思路,我们可以先把红黑树转成链表,之后再重新映射链表即可。这种处理方式是大家比较容易想到的,但这样做会损失一定的效率。不同于上面的处理方式,HashMap 实现的思路则是上好佳(上好佳请把广告费打给我)。如上节所说,在将普通链表转成红黑树时,HashMap 通过两个额外的引用 next 和 prev 保留了原链表的节点顺序。这样再对红黑树进行重新映射时,完全可以按照映射链表的方式进行。这样就避免了将红黑树转成链表后再进行映射,无形中提高了效率。
以上就是红黑树拆分的逻辑,下面看一下具体实现吧:
从源码上可以看得出,重新映射红黑树的逻辑和重新映射链表的逻辑基本一致。不同的地方在于,重新映射后,会将红黑树拆分成两条由 TreeNode 组成的链表。如果链表长度小于 UNTREEIFY_THRESHOLD,则将链表转换成普通链表。否则根据条件重新将 TreeNode 链表树化。举个例子说明一下,假设扩容后,重新映射上图的红黑树,映射结果如下:
前面说过,红黑树中仍然保留了原链表节点顺序。有了这个前提,再将红黑树转成链表就简单多了,仅需将 TreeNode 链表转成 Node 类型的链表即可。相关代码如下:
上面的代码并不复杂,不难理解,这里就不多说了。到此扩容相关内容就说完了,不知道大家理解没。
如果大家坚持看完了前面的内容,到本节就可以轻松一下。当然,前提是不去看红黑树的删除操作。不过红黑树并非本文讲解重点,本节中也不会介绍红黑树相关内容,所以大家不用担心。
HashMap 的删除操作并不复杂,仅需三个步骤即可完成。第一步是定位桶位置,第二步遍历链表并找到键值相等的节点,第三步删除节点。相关源码如下:
那个白色的靴子是什么鬼