等于大于号 HashMap 源码详细分析(2)
默认情况下,HashMap 初始容量是16,负载因子为 0.75。这里并没有默认阈值,原因是阈值可由容量乘上负载因子计算而来(注释中有说明),即threshold = capacity * loadFactor。但当你仔细看构造方法3时,会发现阈值并不是由上面公式计算而来,而是通过一个方法算出来的。这是不是可以说明 threshold 变量的注释有误呢?还是仅这里进行了特殊处理,其他地方遵循计算公式呢?关于这个疑问,这里也先不说明,后面在分析扩容方法时,再来解释这个问题。接下来,我们来看看初始化 threshold 的方法长什么样的的,源码如下:
上面的代码长的有点不太好看,反正我第一次看的时候不明白它想干啥。不过后来在纸上画画,知道了它的用途。总结起来就一句话:找到大于或等于 cap 的最小2的幂。至于为啥要这样,后面再解释。我们先来看看 tableSizeFor 方法的图解:
上面是 tableSizeFor 方法的计算过程图,这里cap = 536,870,913 = 2<sup>29</sup> + 1,多次计算后,算出n + 1 = 1,073,741,824 = 2<sup>30</sup>。通过图解应该可以比较容易理解这个方法的用途,这里就不多说了。
说完了初始阈值的计算过程,再来说说负载因子(loadFactor)。对于 HashMap 来说,负载因子是一个很重要的参数,该参数反应了 HashMap 桶数组的使用情况(假设键值对节点均匀分布在桶数组中)。通过调节负载因子,可使 HashMap 时间和空间复杂度上有不同的表现。当我们调低负载因子时,HashMap 所能容纳的键值对数量变少。扩容时,重新将键值对存储新的桶数组里,键的键之间产生的碰撞会下降,链表长度变短。此时,HashMap 的增删改查等操作的效率将会变高,这里是典型的拿空间换时间。相反,如果增加负载因子(负载因子可以大于1),HashMap 所能容纳的键值对数量变多,空间利用率高,但碰撞率也高。这意味着链表长度变长,效率也随之降低,这种情况是拿时间换空间。至于负载因子怎么调节,这个看使用场景了。一般情况下,我们用默认值就可以了。
HashMap 的查找操作比较简单,查找步骤与原理篇介绍一致,即先定位键值对所在的桶的位置,然后再对链表或红黑树进行查找。通过这两步即可完成查找,该操作相关代码如下:
查找的核心逻辑是封装在 getNode 方法中的,getNode 方法源码我已经写了一些注释,应该不难看懂。我们先来看看查找过程的第一步 - 确定桶位置,其实现代码如下:
这里通过(n - 1)& hash即可算出桶的在桶数组中的位置,可能有的朋友不太明白这里为什么这么做,这里简单解释一下。HashMap 中桶数组的大小 length 总是2的幂,此时,(n - 1) & hash 等价于对 length 取余。但取余的计算效率没有位运算高,所以(n - 1) & hash也是一个小的优化。举个例子说明一下吧,假设 hash = 185,n = 16。计算过程示意图如下:
上面的计算并不复杂,这里就不多说了。
在上面源码中,除了查找相关逻辑,还有一个计算 hash 的方法。这个方法源码如下:
看这个方法的逻辑好像是通过位运算重新计算 hash,那么这里为什么要这样做呢?为什么不直接用键的 hashCode 方法产生的 hash 呢?大家先可以思考一下,我把答案写在下面。
这样做有两个好处,我来简单解释一下。我们再看一下上面求余的计算图,图中的 hash 是由键的 hashCode 产生。计算余数时,由于 n 比较小,hash 只有低4位参与了计算,高位的计算可以认为是无效的。这样导致了计算结果只与低位信息有关,高位数据没发挥作用。为了处理这个缺陷,我们可以上图中的 hash 高4位数据与低4位数据进行异或运算,即 hash ^ (hash >>> 4)。通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。此时的计算过程如下:
民进党当选