主成分分析_成份分析_主成分分析的主要步骤(3)
在INSIGHT中打开WORK.PRIN,分别绘制JULY对JANUARY、PRIN2对PRIN1的散点图(图 1)。从图可以看出主成份为原始变量的一个正交旋转。输出如下:
Principal Component Analysis 62 Observations 2 Variables Simple Statistics JULY JANUARY Mean 75.92096774 32.55483871 StD 4.88061193 11.59197967 Covariance Matrix JULY JANUARY JULY 23.8203728 43.4319461 JANUARY 43.4319461 134.3739926 Total Variance = 158.19436542 Eigenvalues of the Covariance Matrix Eigenvalue Difference Proportion Cumulative PRIN1 149.396 140.597 0.944380 0.94438 PRIN2 8.799 . 0.055620 1.00000 Eigenvectors PRIN1 PRIN2 JULY 0.326866 0.945071 JANUARY 0.945071 -.326866
http://www.jiaoanw.com/%E6%95%99%E6%A1%88%E6%A0%BC%E5%BC%8F/article-10176-3.html
http://www.jiaoanw.com/
true
教案网
http://www.jiaoanw.com/%E6%95%99%E6%A1%88%E6%A0%BC%E5%BC%8F/article-10176-3.html
report
1913
在INSIGHT中打开WORK.PRIN,分别绘制JULY对JANUARY、PRIN2对PRIN1的散点图(图 1)。从图可以看出主成份为原始变量的一个正交旋转。输出如下: Principal Component
最后的笑脸帅啊