您现在的位置:首页 > 教案模板 > 正文

圆锥的侧面积和全面积公式 中考数学61条易错知识点,你错,我不错,那我就赢了! VS(2)

2018-01-11 08:02 网络整理 教案网

三、函数

易错点1:各个待定系数表示的的意义。

易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。圆锥的侧面积和全面积公式

易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

易错点6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的求解方法,距离之差最大值的求解方法。

易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

四、三角形

易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。

易错点2:三角形三边之间的不等关系,注意其中的“任何两边”。最短距离的方法。

易错点3:三角形的内角和,三角形的分类与三角形内外角性质,特别关注外角性质中的“不相邻”。

易错点4:全等形,全等三角形及其性质,三角形全等判定。着重学会论证三角形全等,三角形相似与全等的综合运用以及线段相等是全等的特征,线段的倍分是相似的特征以及相似与三角函数的结合。边边角两个三角形不一定全等

易错点5:两个角相等和平行经常是相似的基本构成要素,以及相似三角形对应高之比等于相似比,对应线段成比例,面积之比等于相似比的平方

易错点6:等腰(等边)三角形的定义以及等腰(等边)三角形的判定与性质,运用等腰(等边)三角形的判定与性质解决有关计算与证明问题,这里需注意分类讨论思想的渗入。

易错点7:运用勾股定理及其逆定理计算线段的长,证明线段的数量关系,解决与面积有关的问题以及简单的实际问题。(2012年25题考点)

易错点8:将直角三角形,平面直角坐标系,函数,开放性问题,探索性问题结合在一起综合运用探究各种解题方法。

易错点9:中点,中线,中位线,一半定理的归纳以及各自的性质。

易错点10:直角三角形判定方法:三角形面积的确定与底上的高(特别是钝角三角形)

易错点11:三角函数的定义中对应线段的比经常出错以及特殊角的三角函数值。

五、四边形

易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。三角形的稳定性与四边形不稳定性。

易错点2:平行四边形注意与三角形面积求法的区分。平行四边形与特殊平行四边形之间的转化关系。

易错点3:运用平行四边形是中心对称图形,过对称中心的直线把它分成面积相等的两部分。对角线将四边形分成面积相等的四部分。

易错点4:平行四边形中运用全等三角形和相似三角形的知识解题,突出转化思想的渗透。

易错点5:矩形、菱形、正方形的概念、性质、判定及它们之间的关系,主要考查边长、对角线长、面积等的计算。矩形与正方形的折叠,(23题必考)

易错点6:四边形中的翻折、平移、旋转、剪拼等动手操作性问题,掌握其中的不变与旋转一些性质。(18题必考)

易错点7:(25题可能用到)梯形问题的主要做辅助线的方法

六、圆:

易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。(选题最后一题考)

易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。

圆锥侧面积计算公式_圆锥的侧面积和全面积公式_圆锥的侧面积公式推导

易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。