您现在的位置:首页 > 教案格式 > 正文

自然数的集合定义 1+1=2:我们为什么信赖算术? 【文化散论】

2018-02-26 01:09 网络整理 教案网

链 集合论_自然数的集合定义计算_自然数的集合定义

达纳·麦肯齐

【编者按】

达纳·麦肯齐,普林斯顿大学数学博士,科普作家。他早年在杜克大学等知名学府教了13年的数学,后专事写作。《无言的宇宙》讲述的是人类历史上24个美丽而伟大的公式背后的故事,从最基本的1 + 1 = 2到揭示电磁现象的“麦克斯韦方程”,从著名的爱因斯坦质能公式E = mc2到神秘的“汉密尔顿的四元数方程”——在深谙“数学之美”的人看来,这些方程在诉说着关于宇宙的永恒秘密,没有任何一种人类的表达方式可以与之匹敌。

本文选自该书第一章《我们为什么信赖算术:世界上最简单的公式》,由澎湃新闻经“未读”授权发布。

1加1等于2,这或许是所有公式中最基本的一个。简单明了、亘古不变、毋庸置疑……但究竟是谁第一个写下了这一公式?它与其他的算术公式来自何方?我们如何知道它们是正确的?这些问题的答案远非一目了然。

令人惊讶的一点是,古代数学中有关加法讨论的证据不多。人们发现的巴比伦陶土书板和埃及纸莎草文献中充斥着乘法与除法表,但却没有加法表,也没有“1+1=2”。看上去,加法是太明显的事实,用不着什么解释,而乘法和除法的情况则不同。原因之一或许是在许多文化中使用较为简单的计数系统。例如,在埃及,人们把一个像324这样的数字写成三个“一百”的符号、两个“十”的符号和四个“一”的符号。要把两个数字相加,人们就把它们所有的符号放置在一起,必要时把十个“一”换成一个“十”,以此类推。这跟我们现在不时地把零钱放到一起,然后用较大面额的纸币置换较小面额的钱币非常相似。谁也不需要记住1+1=2,因为 | 和 | 的和显然就是 || 。

对此的一个简单的解释是:在数轴上,2是1右面的下一个数字。然而,自20世纪早期以降,逻辑学家们更愿意通过集合论定义自然数。于是这一公式的大体意思就是:任何两个不相交的只有一个元素的集合的并集是一个有两个元素的集合。

自然数的集合定义计算_链 集合论_自然数的集合定义

在古代中国,算术计算是在算盘的某种前身——“计算板”上进行的,其中用小棒为个、十、百等数位计数。同样,加法就是直接把恰当数目的小棒合并到一起,必要时进位到下一栏。没什么需要记忆的。然而乘法表(九九表)就是另一码事了。这是一个重要的工具,因为乘法8×9=72 要比把9个8加起来快。

所以,尽管数学家几千年来都心照不宣地知道1+1=2,但直到16世纪的某一天为止,这一等式或许并没有写成我们今天的形式。而且直到19世纪之前,数学家们都一直没有探究过我们相信这一等式的原因。

在整个19世纪中,数学家开始认识到,他们的前辈过分经常地依赖于一些隐藏的假定,而这些假定并不总是可以很容易地证明为真的(而且有时候是错误的)。打破古代数学坚冰的第一道裂缝出现于19世纪初叶,即非欧几何的发现。如果连伟大的欧几里得做出的假定都并非无懈可击,那么数学中还有哪些部分能够令人安之若素呢?

19世纪晚期,更具哲学倾向的数学家如利奥波德·克罗内克、朱塞佩·皮亚诺、大卫·希尔伯特和伯特兰·罗素等,开始非常认真仔细地检查数学的基础。他们在考虑:哪些东西是我们真正能够确信无疑地知道的。我们是否能够为数学找到一套基本假定,并可以证明它们是自洽的呢?

上图为打开算术之门的钥匙:杰姆什德·阿尔卡什(1390—1450)的一份阿拉伯文手稿。自然数的集合定义

德国数学家克罗内克认为,自然数1,2,3,……是上帝的恩赐。因此不言自明,像等式1+1=2这类算术定律是可靠的。但大部分逻辑学家反对他的观点,他们认为集合这一概念比整数更为基本。“1+1=2”这一陈述到底意味着什么?从根本上说,这意味着,当含有一个元素的集合与同样含有一个元素的集合合并时,所得到的并集总是含有两个元素。但要让这种说法说得通,我们就需要回答一连串新问题,例如集合的意义是什么、有关集合我们知道些什么、为什么我们会知道这些,等等。