您现在的位置:首页 > 教案格式 > 正文

合并同类项解一元一次方ppt 多项式的次数|多项式里次数()的次数,叫做这个多项式的次数。(3)

2018-02-16 11:03 网络整理 教案网

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题:理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;

①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;

②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答题。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

一元一次方程应用题型及技巧:

列方程解应用题的几种常见类型及解题技巧:

(1)和差倍分问题:

①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。

(2)行程问题:

基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,

路程=速度×时间。

①相遇问题:快行距+慢行距=原距;

②追及问题:快行距-慢行距=原距;

③航行问题:

顺水(风)速度=静水(风)速度+水流(风)速度,

逆水(风)速度=静水(风)速度-水流(风)速度

例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?

两车同时开出,相背而行多少小时后两车相距600公里?

合并同类项解一元一次方ppt_合并同类项讲解_合并同类项计算题

两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?

慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)

例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?

(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。

例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?

(4)工程问题:

三个基本量:工作量、工作时间、工作效率;

其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。

例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

(5)利润问题:

基本关系:

①商品利润=商品售价-商品进价;

②商品利润率=商品利润/商品进价×100%;

③商品销售额=商品销售价×商品销售量;

④商品的销售利润=(销售价-成本价)×销售量。

⑤商品售价=商品标价×折扣率例.

例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

(6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。