您现在的位置:首页 > 教案格式 > 正文

充分条件 2018届高三数学训练题(74 ):随机事件的频率与概率

2018-01-17 18:04 网络整理 教案网

充分条件和充分不必要_充分条件和必要条件图_充分条件

2018届高三数学训练题(74 ):随机事件的频率与概率_高三数学_数学_高中教育_教育专区

暂无评价|0人阅读|0次下载|

充分条件和必要条件图_充分条件和充分不必要_充分条件

2018届高三数学训练题(74 ):随机事件的频率与概率_高三数学_数学_高中教育_教育专区。训练目标 训练题型 解题策略 一、选择题(1)了解事件间的关系,随机事件的频率与概率的区别与联系,并会计算; (2)理解互斥事件与对立事件的区别与联系,并会利用公式进行计算. (1)利用频率估计概

训练目标 训练题型 解题策略 一、选择题(1)了解事件间的关系,随机事件的频率与概率的区别与联系,并会计算; (2)理解互斥事件与对立事件的区别与联系,并会利用公式进行计算. (1)利用频率估计概率;(2)求互斥事件,对立事件的概率. (1)根据频率与概率的关系,由频率直接估计概率;(2)根据互斥、对立事件的 定义分析所给的两个事件的关系,再选择相应的公式求解。充分条件1.容量为 20 的样本数据,分组后的频数如下表: 分组 频数 [10,20) 2 [20,30) 3 [30,40) 4 ) [40,50) 5 [50,60) 4 [60,70) 2则根据样本数据估计落在区间[10,40)的概率为( A.0。35 C.0。55 B.0。45 D.0。652.(2016·山西四校联考)从 1,2,3,4 这四个数中一次随机取两个,则取出的两个数之和为偶数的概 率是( A。 C。 1 6 1 2 ) B。 D。 1 3 1 5 )3.甲:A1、A2 是互斥事件;乙:A1、A2 是对立事件.那么( A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件,也不是乙的必要条件4.掷一颗质地均匀的骰子,观察所得的点数为 a,设事件 A=“a 为 3”,B=“a 为 4”,C=“a 为奇数”,则下列结论正确的是( A.A 与 B 为互斥事件 C.A 与 C 为对立事件 ) B.A 与 B 为对立事件 D.A 与 C 为互斥事件5.从装有红球、白球和黑球各 2 个的口袋内一次取出 2 个球,则与事件“两球都为白球”互斥而非 对立的事件是以下事件“①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球”中的 ( ) A.①② C.②③B.①③ D.①②③ )6.(2017·沈阳四校联考)任取一个三位正整数 N,则对数 log2N 是一个正整数的概率是( A。

充分条件_充分条件和必要条件图_充分条件和充分不必要

C。 1 225 1 300 B。 D。充分条件 3 899 1 4507.掷一枚均匀的硬币两次,事件 M:一次正面朝上,一次反面朝上;事件 N:至少一次正面朝上, 则下列结果正确的是( 1 1 A.P(M)= ,P(N)= 3 2 1 1 C.P(M)= ,P(N)= 2 4 ) 1 1 B.P(M)= ,P(N)= 2 2 1 3 D.P(M)= ,P(N)= 2 4 )8.在正六边形的 6 个顶点中随机选择 4 个顶点,则构成的四边形是梯形的概率为( A。 C。 1 5 1 6 B。 D。 2 5 1 8二、填空题 9.在一场比赛中,某篮球队的 11 名队员共有 9 名队员上场比赛,其得分的茎叶图如图所示.从上 述得分超过 10 分的队员中任取 2 名,则这 2 名队员的得分之和超过 35 分的概率为________.10.从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为 x,则 log2x 为整数的概率为________. 11.将一枚骰子(一种六个面上分别标有 1,2,3,4,5,6 的正方体玩具)先后抛掷 2 次,向上的点数分 别记为 m,n,则点 P(m,n)落在区域|x-2|+|y-2|≤2 内的概率是________. 12.设 m,n 分别为连续两次投掷骰子得到的点数,且向量 a=(m,n),b=(1,-1),则向量 a,b 的夹角为锐角的概率是________。