您现在的位置:首页 > 教案格式 > 正文

线性规划模型_线性规划模型解的步骤_线性规划三大常用题型(2)

2017-01-28 02:01 网络整理 教案网

(1)两边同乘于B-1,得

XB + B-1 N XN = B-1 b

同时,由上式得XB = B-1 b - B-1 N XN,也代入目标函数,问题可以继续化为:

规划问题3:

Min z=CB B-1 b + ( CN - CB B-1 N ) XN

S.T.

XB+B-1N XN = B-1 b (1)

XB >= 0, XN >= 0 (2)

令N:=B-1N,b:= B-1 b,ζ= CB B-1b,σ= CN - CB B-1 N,则上述问题化为规划问题形式4:

Min z= ζ + σ XN

S.T.

XB+ N XN = b (1)

XB >= 0, XN >= 0 (2)

在上述变换中,若能找到规划问题形式4,使得b>=0,称该形式为初始基解形式。线性规划模型

上述的变换相当于对整个扩展矩阵(包含C及A) 乘以增广矩阵 。所以重在选择B,从而找出对应的CB。

若存在初始基解

若σ>= 0

则z >=ζ。同时,令XN = 0,XB = b,这是一个可行解,且此时z=ζ,即达到最优值。所以,此时可以得到最优解。

若σ >= 0不成立

可以采用单纯形表变换。

σ中存在分量<0。这些负分量对应的决策变量编号中,最小的为j。N中与j对应的列向量为Pj。

若Pj <=0不成立

则Pj至少存在一个分量ai,j为正。在规划问题4的约束条件(1)的两边乘以矩阵T。

T=

则变换后,决策变量xj成为基变量,替换掉原来的那个基变量。为使得T b >= 0,且T Pj=ei(其中,ei表示第i个单位向量),需要:

l ai,j>0。

l βq+βi*(-aq,j/ai,j)>=0,其中q!=i。即βq>=βi/ ai,j * aq,j。

n 若aq,j<=0,上式一定成立。

n 若aq,j>0,则需要βq / aq,j >=βi/ ai,j。因此,要选择i使得βi/ ai,j最小。

如果这种方法确定了多个下标,选择下标最小的一个。

转换后得到规划问题4的形式,继续对σ进行判断。由于基解是有限个,因此,一定可以在有限步跳出该循环。

若对于每一个i,ai,j<=0

最优值。

若不能寻找到初始基解

无解。

若A不是行满秩

化简直到A行满秩,转到若A行满秩。

发展

法国数学家J.- B.- J.傅里叶和C.瓦莱-普森分别于1832和1911年独立地提

出线性规划的想法,但未引起注意。

1939年苏联数学家Л.В.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视。

1947年美国数学家G.B.Dantzing提出求解线性规划的单纯形法,为这门学科奠定了基础。

1947年美国数学家J.von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域,扩大了它的应用范围和解题能力。

1951年美国经济学家T.C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖。

50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法。例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析和参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B.丹齐克和P.沃尔夫提出分解算法等。

线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究。由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX,OPHEIE,UMPIRE等,可以很方便地求解几千个变量的线性规划问题。