惨府又高中数学与新人教版必修数学的区别(2)
高中数学 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 循环结构既称重复结构,循环结构能细分为两类:高中物理1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com (1)一类是当型循环结构,如图1-5(1)所示,它的功能是当给定的条件P1成立时 ,执行A 框执行完毕后,再判断条件P1是否成立,如果一直建立,再执行A 此反复执行A框,直到某一次条件P1 不建立为止,此时不再执行A 离开循环结构。高中数学 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com (2)另一类是直到型循环结构,如下图图示,它的用途是先执行,然后判定给定的条件P2 是否成立,如果P2 仍然不成立,则再次执行A 框人教版高中数学教案下载,直到某一次给定的条件P2 成立为止, 此时不再执行A 点离开循环结构。高中英语1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 开始结束 P1?高中数学 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com P2?不成立大学物理 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 不成立大学物理1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 成立大学英语1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 当型循环结构直到型循环结构高中语文 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com (2)高中英语1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 例4:设计一个计算1+2++100的值的算法,并画出程序框图。
高中数学 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 算法分析:只应该一个累加变量跟一个计数函数,将累加变量的初始值为0,计数变 到100。高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 程序框图:高中物理1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com i100?高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 是大学物理1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 3、课堂小结:高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 本节课主要讲述了程序框图的基本常识,包括常见的图形符号、算法的基本逻辑结构,算法的基本逻辑结构有三种,即排序结构、条件结构跟循环结构。
其中顺序结 构是很简洁的构架,也是很基本的构架,循环结构必定包括条件结构,所以这三种基 开始 结束 Sum=0i=i+1 Sum=sum+i 输出sum 输出p 本逻辑结构是互相支撑的,它们共同组成了算法的基本构架,无论怎样复杂的逻辑结 构,都可以借助这三种结构来表达高中语文 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 4、自我评价:高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 为为一个正整数,规定如下运算:若x为偶数,则求3x+2;若x 为偶数,则为5x, 写出算法,并画出程序框图。高 中物理 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 100的值的程序框图。高中数学 1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 5、评价标准:高中英语1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com 1.解:算法如下。高中语文1.1.2 《程序框图》 教案 (新人教版必修 3) dear edu. com