您现在的位置:首页 > 教案模板 > 正文

勾股定理的逆定理的应用2018年福建省中小学新任教师公开招聘

2018-02-13 22:05 网络整理 教案网

勾股定理的逆定理的应用_勾股定理逆定理怎么证_勾股定理的逆定理ppt

考试内容:不定积分的概念与性质、定积分的概念与性质、牛顿一莱布尼茨公式、二重积分的概念与性质。

考试要求:

⑴了解不定积分的定义与性质。掌握基本积分表并用不定积分的性质和基本积分公式求简单函数的不定积分。勾股定理的逆定理的应用

⑵理解定积分的定义与性质、几何意义;掌握牛顿一莱布尼茨公式并用定积分的性质和牛顿一莱布尼茨公式求简单函数的定积分。

⑶了解二重积分的定义、几何意义。

⑷理解用定积分、二重积分求曲边梯形的面积、曲顶柱体的体积的思想方法。

12.向量代数

考试内容:空间直角坐标系、向量及其加减法、向量与数的乘法、向量的坐标表示、数量积、向量积。

考试要求:

⑴掌握空间直角坐标系、空间两点间的距离公式。

⑵掌握向量的概念及几何表示和坐标表示。勾股定理的逆定理的应用

⑶掌握向量加法、减法、向量与数的乘法、两个向量的数量积、两个向量的向量积的定义、性质、运算规则。

13.直线和圆的方程

考试内容:直线的倾斜角和斜率、直线方程的点斜式和两点式、直线方程的一般式、两条直线平行与垂直的条件、两条直线的交角、点到直线的距离、曲线与方程的概念、由已知条件列出曲线方程、圆的标准方程和一般方程。

考试要求:

⑴理解直线的倾斜角和斜率的概念;掌握过两点的直线的斜率公式;掌握直线方程的点斜式、两点式、一般式并根据条件熟练地求出直线方程。

⑵掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式并根据直线的方程判断两条直线的位置关系。

⑶了解解析几何的基本思想,了解坐标法。

⑷掌握圆的标准方程和一般方程。

14.圆锥曲线方程

考试内容:椭圆及其标准方程、椭圆的简单几何性质、双曲线及其标准方程、双曲线的简单几何性质、抛物线及其标准方程、抛物线的简单几何性质。

考试要求:

⑴掌握椭圆的定义、标准方程和简单几何性质。

⑵掌握双曲线的定义、标准方程和简单几何性质。

勾股定理的逆定理ppt_勾股定理的逆定理的应用_勾股定理逆定理怎么证

⑶掌握抛物线的定义、标准方程和简单几何性质。

⑷了解圆锥曲线的初步应用。

15.直线、平面几何图形和简单几何体

考试内容:平面几何图形及其基本性质,平面图形直观图的画法,空间两直线、两平面、直线与平面的位置关系,多面体,正多面体,棱柱,棱锥,球。

考试要求:

⑴理解直线、射线、线段、角、距离、垂线、平行线、垂直、平行、相交等概念;理解平面的基本性质,用斜二测画法画水平放置的平面图形的直观图;了解空间两直线、两平面、直线与平面的位置关系并正确表示空间两直线、两平面、直线和平面的位置关系。

⑵掌握长方形、正方形、平行四边形、三角形、梯形、圆形的特征;掌握长方体、正方体、圆柱和圆锥的特征;熟练掌握有关图形的周长、面积、体积、容积的求法。

⑶理解三角形及其内角、外角、中线、高线、角平分线、全等三角形、等腰三角形、直角三角形、三角形重心等概念;掌握两个三角形全等的条件,运用勾股定理及其逆定理解决一些简单的实际问题。

⑷理解平行四边形、矩形、菱形、正方形的概念以及它们之间的关系;证明平行四边形、矩形、菱形、正方形的性质定理和三角形的中位线定理。

⑸理解圆、弧、弦、圆心角、圆周角、等圆、等弧、切线、正多边形的概念;掌握点与圆、直线与圆、圆与圆的位置关系。

⑹理解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念;掌握棱柱、正棱锥、球的性质,能画直棱柱、正棱锥的直观图;能求柱体、锥体、球的体积;能求正棱柱、正棱锥、球的表面积。

⑺理解轴对称、轴对称图形、中心对称、中心对称图形的概念;掌握轴对称、轴对称图形、中心对称、中心对称图形、图形旋转、图形平移的基本性质。

⑻理解比例的基本性质、线段的比、成比例线段;理解相似三角形的判定定理和性质定理并解决一些简单的实际问题;能用锐角三角函数解直角三角形并解决一些简单的实际问题。