您现在的位置:首页 > 教案格式 > 正文

概率密度函数估计 从较大似然到EM算法浅解

2017-12-25 12:01 网络整理 教案网

积分与概率密度_二项分布的概率密度_概率密度函数估计

假设我们有一个样本集{x(1),…,x(m)},包含m个独立的样本。但每个样本i对应的类别z(i)是未知的(相当于聚类),也即隐含变量。故我们需要估计概率模型p(x,z)的参数θ,但是由于里面包含隐含变量z,所以很难用较大似然求解,但如果z知道了,那我们就很容易求解了。

对于参数估计,我们本质上还是想获得一个使似然函数较大化的那个参数θ,现在与较大似然不同的只是似然函数式中多了一个未知的变量z,见下式(1)。概率密度函数估计也就是说我们的目标是找到适合的θ和z让L(θ)较大。那我们也许会想,你就是多了一个未知的变量而已啊,我也可以分别对未知的θ和z分别求偏导,再令其等于0,求解出来不也一样吗?

本质上我们是需要较大化(1)式(对(1)式,我们回忆下联合概率密度下某个变量的边缘概率密度函数的求解,注意这里z也是随机变量。对每一个样本i的所有可能类别z求等式右边的联合概率密度函数和,也就得到等式左边为随机变量x的边缘概率密度),也就是似然函数,但是可以看到里面有“和的对数”,求导后形式会非常复杂(自己可以想象下log(f1(x)+ f2(x)+ f3(x)+…)复合函数的求导),所以很难求解得到未知参数z和θ。那OK,我们可否对(1)式做一些改变呢?我们看(2)式,(2)式只是分子分母同乘以一个相等的函数,还是有“和的对数”啊,还是求解不了,那为什么要这么做呢?咱们先不管,看(3)式,发现(3)式变成了“对数的和”,那这样求导就容易了。概率密度函数估计我们注意点,还发现等号变成了不等号,为什么能这么变呢?这就是Jensen不等式的大显神威的地方。

设f是定义域为实数的函数,如果对于所有的实数x。如果对于所有的实数x,f(x)的二次导数大于等于0,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的,那么f是凸函数。如果只大于0,不等于0,那么称f是严格凸函数。

特别地,如果f是严格凸函数,当且仅当X是常量时,上式取等号。

概率密度函数估计_积分与概率密度_二项分布的概率密度

图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到E[f(X)]>=f(E[X])成立。

(2)式中的期望,(考虑到E(X)=∑x*p(x),f(X)是X的函数,则E(f(X))=∑f(x)*p(x)),又,所以就可以得到公式(3)的不等式了(若不明白,请拿起笔,呵呵):

OK,到这里,现在式(3)就容易地求导了,但是式(2)和式(3)是不等号啊,式(2)的较大值不是式(3)的较大值啊,而我们想得到式(2)的较大值,那怎么办呢?

现在我们就需要一点想象力了,上面的式(2)和式(3)不等式可以写成:似然函数L(θ)>=J(z,Q),那么我们可以通过不断的较大化这个下界J,来使得L(θ)不断提高,最终达到它的较大值。

见上图,我们固定θ,调整Q(z)使下界J(z,Q)上升至与L(θ)在此点θ处相等(绿色曲线到蓝色曲线),然后固定Q(z),调整θ使下界J(z,Q)达到较大值(θt到θt+1),然后再固定θ,调整Q(z)……直到收敛到似然函数L(θ)的较大值处的θ*。这里有两个问题:什么时候下界J(z,Q)与L(θ)在此点θ处相等?为什么一定会收敛?

概率密度函数估计_二项分布的概率密度_积分与概率密度

首先第一个问题,在Jensen不等式中说到,当自变量X是常数的时候,等式成立。而在这里,即:

再推导下,由于(因为Q是随机变量z(i)的概率密度函数),则可以得到:分子的和等于c(分子分母都对所有z(i)求和:多个等式分子分母相加不变,这个认为每个样例的两个概率比值都是c),则:

至此,我们推出了在固定参数θ后,使下界拉升的Q(z)的计算公式就是后验概率,解决了Q(z)如何选择的问题。这一步就是E步,建立L(θ)的下界。接下来的M步,就是在给定Q(z)后,调整θ,去极大化L(θ)的下界J(在固定Q(z)后,下界还可以调整的更大)。那么一般的EM算法的步骤如下:

这个不断的迭代,就可以得到使似然函数L(θ)较大化的参数θ了。那就得回答刚才的第二个问题了,它会收敛吗?

感性的说,因为下界不断提高,所以极大似然估计单调增加,那么最终我们会到达较大似然估计的较大值。理性分析的话,就会得到下面的东西: