下面是小明解三元一次方程组的消元过程_难的三元一次方程组_三元一次方程组程序
“自学互帮导学法”课堂教学设计
课 题8.4 三元一次方程组解法举例课时第一课时课 型新授课修改意见
教学目标
1.理解三元一次方程组的含义.
2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元或一元的思路.
教学重点
1.使学生会解简单的三元一次方程组.
2.通过本节学习,进一步体会“消元”的基本思想.
教学难点
针对方程组的特点,灵活使用代入法、加减法等重要方法.
学情分析学习三元一次方程组的解法,由于三元一次方程组相关知识与二元一次方程组类似,所以先结合实例运用类比法学习三元一次方程组的有关概念,然后利用消元思想解三元一次方程组
学法指导利用一个具体问题,在复习已有知识的基础上类比学习学习新内容.教师为学生提供部分学习素材,创设和谐融洽积极向上的学习氛围,学生在独立思考的基础上与同学交流合作,教师的指导与学生的探索有机结合。
教 学 过 程
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见
一、创设情景,导入新课
二.学生成果展示:
三.新课学习
四.探索用“消元法”接三元一次方程组
五.例题讲解
六.知能训练
七.课堂小结
八.作业布置1、老师手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,请同学们帮老师算算1元,2元,5元纸币各多少张?
2、老师引导学生,并纠正学生的错误
3.指导学生归纳三元一次方程组的含义
4. 学生小组交流,探索如何消元.
例:解三元一次方程组
归纳:此方程组的特点是①不含y,而②③中y的系数为整数倍关系,因此用加减法从②③中消去y后,再与①组成关于x和z的二元一次方程组的解法最合理.反之用代入法运算较烦琐.
解下列三元一次方程组:
习题8.4 1、2.
1、学生思考讨论后回答下列问题
(1).题目中有几个未知数,含有几个相等关系?你能根据题意列出几个方程?
(2).上面问题的解需要满足你列出的所有方程吗?
(3).问题(1)中的三个方程合在一起组成三元一次方程组,你能总结出三元一次方程组的含义吗?
(4).你怎样得到上面问题的答案呢?
2.(1).设1元,2元,5元各x张,y张,z张.(共三个未知数)
(2).三种纸币共12张;三种纸币共22元;1元纸币的数量是2元纸币的4倍.
(3).上述三种条件都要满足,因此可得方程组
这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
问题:
(1).你能把上面的方程组化只含两个未知数的二元一次方程组吗?
(2).你能解出上面的二元一次方程组吗?
(3).如何求方程组中第三个未知数的值?
(4).总结解三元一次方程组的基本思路?
解法:
把③分别代入①②,得
解这个二元一次方程组得
把 代入③,得
三元一次方程组的解为
总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
即三元一次方程组 二元一次方程组 一元一次方程
让学生独立分析、解题,方法不唯一,可分别让学生板演后比较
解:②×3+③,得11x+10z=35.④
①与④组成方程组
把x=5,z=-2代入②,得y= .
因此,三元一次方程组的解为
小组间交流.完成后与小组同学交流,说说你找出的消元方法
1.学会三元一次方程组的基本解法.
2.掌握代入法,加减法的灵活选择,体会“消元”思想.
1.学生不能正确的找出三个等量关系
2.在老师帮助下能完成
3.定义不完整
4.老师补充说明老师引导学生完成:
1元纸币张数+2元纸币张数+5元纸币张数=12张
1元纸币的张数=2元纸币的张数的4倍
1元的金额+2元的金额+5元的金额=22元
老师总结补充。下面是小明解三元一次方程组的消元过程。
板书设计8.4三元一次方程组解法举例
定义: 例题: 练习题:
步骤:
参考书目及
推荐资料
七年级下册数学教材
教学反思
类比迁移,举一反三:类比二元一次方程组的知识学习三元一次方程组,并进一步应用于解其它一元高次方程组.同时,根据方程组的特点灵活选择恰当的解法,在应用的过程中形成技能技巧.
给无望的人希望和生命的喜悦