您现在的位置:首页 > 教案模板 > 正文

点是否在矩形中判断 初中数学解题技巧顺口溜(2)

2017-12-27 15:02 网络整理 教案网

大于头来小于尾,大小不一中间找

大大小小没有解,四种情况全来了

同向取两边,异向取中间

中间无元素,无解便出现

幼儿园小鬼当家,(同小相对取较小)

敬老院以老为荣,(同大就要取较大)

军营里没老没少。(大小小大就是它)

大大小小解集空。点是否在矩形中判断(小小大大哪有哇)

解一元二次不等式

首先化成一般式,构造函数第二站

判别式值若非负,曲线横轴有交点

A正开口它向上,大于零则取两边

代数式若小于零,解集交点数之间

方程若无实数根,口上大零解为全

小于零将没有解,开口向下正相反

用平方差公式因式分解

异号两个平方项,因式分解有办法

两底和乘两底差,分解结果就是它

用完全平方公式因式分解

两平方项在两端,底积2倍在中部

同正两底和平方,全负和方相反数

分成两底差平方,方正倍积要为负

两边为负中间正,底差平方相反数

一平方又一平方,底积2倍在中路

三正两底和平方,全负和方相反数

分成两底差平方,两端为正倍积负

两边若负中间正,底差平方相反数

用公式法解一元二次方程

要用公式解方程,首先化成一般式

调整系数随其后,使其成为最简比

确定参数abc,计算方程判别式

判别式值与零比,有无实根便得知

有实根可套公式,没有实根要告之

常规的配方法解一元二次方程

左未右已先分离,二系化“1”是其次

一系折半再平方,两边同加没问题

左边分解右合并,直接开方去解题

该种解法叫配方,解方程时多练习

间接的配方法解一元二次方程

已知未知先分离,因式分解是其次

调整系数等互反,和差积套恒等式

完全平方等常数,间接配方显优势

【注】恒等式

解一元二次方程

方程没有一次项,直接开方最理想

如果缺少常数项,因式分解没商量

b、c相等都为零,等根是零不要忘

b、c同时不为零,因式分解或配方

也可直接套公式,因题而异择良方

正比例函数的鉴别的判断

正比例函数,检验当分两步走

一量表示另一量,是与否

若有还要看取值,全体实数都要有

正比例函数是否,辨别需分两步走

一量表示另一量,有没有

若有再去看取值,全体实数都需要

区分正比例函数,衡量可分两步走

一量表示另一量,是与否

若有还要看取值,全体实数都要有

正比例函数的图像与性质

正比函数图直线,经过象限和原点

K正一三负二四,变化趋势记心间

K正左低右边高,同大同小向爬山

K负左高右边低,一大另小下山峦

一次函数

一次函数图直线,经过两个特殊点

K正左低右边高,越走越高向爬山

K负左高右边低,越来越低很明显

K称斜率b截距,截距为零变正函

反比例函数

反比函数双曲线,经过象限不过点

K正一三负二四,两轴是它渐近线

K正左高右边低,一三象限滑下山

K负左低右边高,二四象限如爬山

二次函数

判断两个矩形是否重叠_点是否在矩形中判断_判断点在矩形内java

二次方程零换y,二次函数便出现

全体实数定义域,图像叫做抛物线

抛物线有对称轴,两边单调正相反

A定开口及大小,线轴交点叫顶点

顶点非高即最低。上低下高很显眼

如果要画抛物线,平移也可去描点

提取配方定顶点,两条途径再挑选

列表描点后连线,平移规律记心间

左加右减括号内,号外上加下要减

二次方程零换y,就得到二次函数

图像叫做抛物线,定义域全体实数

A定开口及大小,开口向上是正数

绝对值大开口小,开口向下A负数

抛物线有对称轴,增减特性可看图

线轴交点叫顶点,顶点纵标最值出

如果要画抛物线,描点平移两条路

提取配方定顶点,平移描点皆成图

列表描点后连线,三点大致定全图

若要平移也不难,先画基础抛物线

顶点移到新位置,开口大小随基础

【注】基础抛物线

直线、射线和线段

直线射线与线段,形状相似有关联

直线长短不确定,可向两方无限延

射线仅有一端点,反向延长成直线