第七章 学习OpenCV(10)
运行结果如下图:
尝试识别手势。从摄像机中获取一个2英尺的手的图像,建立一些手势(不能动):手掌竖直和手掌水平。
1. 利用例11得到的结果,在手周围的肤色区域求取梯度方向并对两种手势建立直方图模型;
2. 利用网络摄像机做识别:利用感兴趣的区域找到“潜在的手”,利用例12的方法,在每一个区域求取其梯度方向,通过设定相应的阈值来检测手势;
3. 本例中,竖直手势识别成功,在测试手势直方图中绘制100x100的蓝色矩形;水平手势识别成功,在测试手势直方图中绘制100x100的红色矩形;
4. 本例中,经过测试进行卡方匹配时差异最大,便于区分识别故采用卡方方式进行直方图匹配;
5. 本例中,有寻找手掌轮廓的程序,因为调用后程序实时性明显降低,故未调用;
6. 本例中,白天黑夜识别准确度略有差异,可观察控制台输出的卡方距离变化值,灵活设置正确识别的阈值;
具体代码如下:
#include <cv.h>
#include <highgui.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
using namespace std;
CvPoint Current_Point; //全局变量才可通过普通成员引用变更其值
void getContoursByC(IplImage* src, IplImage* dst, double minarea = 100, double whRatio = 1);
bool find_point(IplImage *img, char val);
void Create_Imask(IplImage *src, IplImage *dst);
void Find_Hand_Region(IplImage *model, IplImage *test, IplImage *mask, IplImage *dst);
void Create_Hist_1D(IplImage* src, IplImage* canny, IplImage* sobel, IplImage* hist_img);
void Compare_Gesture_Hist(IplImage *sobel1, IplImage *sobel2, IplImage *test, IplImage** canny, IplImage* hist_img);
int main(int argc, char* argv[])
{
IplImage *src1, *Imask; //肤色模板 手掌掩码
IplImage *src2, *Isobel1, *Ihist1; //竖直手势模板 梯度方向 直方图
IplImage *src3, *Isobel2, *Ihist2; //水平手势模板 梯度方向 直方图
IplImage *src4, *Isobel3, *Ihist3; //测试手势模板 梯度方向 直方图
IplImage *dst; //肤色区域图像
IplImage *Icanny[3]; //边缘图像
CvCapture* capture;
if (!(src1 = cvLoadImage("D:\\Template\\OpenCV\\Template58_Hand_Track\\Debug\\handd.jpg")))
return -1; //肤色模板
if (!(src2 = cvLoadImage("D:\\Template\\OpenCV\\Template58_Hand_Track\\Debug\\Imask_1.jpg",0)))
return -2; //手势模板1 竖直
if (!(src3 = cvLoadImage("D:\\Template\\OpenCV\\Template58_Hand_Track\\Debug\\Imask_2.jpg",0)))
return -3; //手势模板2 水平
if (argc == 1) //此处代码是做一个判断,有摄像头设备则读入摄像头设备的图像信息,没有则播放本地视频文件
capture = cvCreateCameraCapture(0);
else
return -4; //没有摄像头
src4 = cvQueryFrame(capture); //获取摄像头图像帧
Imask = cvCreateImage(cvGetSize(src1), src1->depth, 1); //手掌掩码图像
dst = cvCreateImage(cvGetSize(src4), IPL_DEPTH_8U, 1); //处理后的反射投影
Icanny[0] = cvCreateImage(cvSize(src2->width, src2->height), 8, 1); //canny图像 深度8
Icanny[1] = cvCreateImage(cvSize(src3->width, src3->height), 8, 1);
Icanny[2] = cvCreateImage(cvSize(src4->width, src4->height), 8, 1);
Isobel1 = cvCreateImage(cvSize(src2->width, src2->height), 32, 1);
Isobel2 = cvCreateImage(cvSize(src3->width, src3->height), 32, 1);
Isobel3 = cvCreateImage(cvSize(src4->width, src4->height), 32, 1);
Ihist1 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Ihist2 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Ihist3 = cvCreateImage(cvSize(320, 300), 8, 3); //320*320
Create_Imask(src1, Imask); //创建肤色掩码图像
Create_Hist_1D(src2, Icanny[0], Isobel1, Ihist1);
Create_Hist_1D(src3, Icanny[1], Isobel2, Ihist2);
cvNamedWindow("竖直手势直方图", 1);
cvNamedWindow("横向手势直方图", 1);
cvNamedWindow("测试手势直方图", 1);
cvNamedWindow("BACK_Projection", 1);
cvNamedWindow("Destination", 1);
while (1)
{
src4 = cvQueryFrame(capture);
Find_Hand_Region(src1, src4, Imask, dst); //寻找肤色区域
Create_Hist_1D(dst, Icanny[2], Isobel3, Ihist3);
Compare_Gesture_Hist(Isobel1, Isobel2, Isobel3, Icanny, Ihist3);
if (!src4)
break;
//cvShowImage("Show_Camera", src4);
char c = cvWaitKey(32);
if (c == 27)
break;
cvShowImage("竖直手势直方图", Ihist1);
cvShowImage("横向手势直方图", Ihist2);
cvShowImage("测试手势直方图", Ihist3);
}
cvWaitKey();
cvReleaseCapture(&capture);
cvReleaseImage(&src1);
cvReleaseImage(&Imask);
cvReleaseImage(&dst);
cvDestroyAllWindows();
}
/*采用cvFindContours提取轮廓,并过滤掉小面积轮廓,最后将轮廓保存*/
void getContoursByC(IplImage* src, IplImage* dst, double minarea, double whRatio)
{
//the parm. for cvFindContours
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contour = 0;
double maxarea = 0;
//for display
cvNamedWindow("Source", CV_WINDOW_NORMAL);
cvShowImage("Source", src);
//二值化
cvThreshold(src, src, 120, 255, CV_THRESH_BINARY);
//提取轮廓
//单通道二值边缘图像、轮廓点集向量、各种轮廓的索引编号向量、检索模式、定义轮廓的近似方法、点偏移量
cvFindContours(src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
cvZero(dst);//清空数组
/*CvSeq* _contour为了保存轮廓的首指针位置,因为随后contour将用来迭代*/
CvSeq* _contour = contour;
int maxAreaIdx = -1, iteratorIdx = 0;//n为面积最大轮廓索引,m为迭代索引
for (int iteratorIdx = 0; contour != 0; contour = contour->h_next, iteratorIdx++/*更新迭代索引*/)
{
double tmparea = fabs(cvContourArea(contour));
if (tmparea > maxarea)
{
maxarea = tmparea;
maxAreaIdx = iteratorIdx;
continue;
}
if (tmparea < minarea)
{
//删除面积小于设定值的轮廓
cvSeqRemove(contour, 0);
continue;
}
CvRect aRect = cvBoundingRect(contour, 0);
if ((aRect.width / aRect.height)<whRatio)
{
//删除宽高比例小于设定值的轮廓
cvSeqRemove(contour, 0);
continue;
}
//CvScalar color = CV_RGB( rand()&255, rand()&255, rand()&255 );//创建一个色彩值
//CvScalar color = CV_RGB(0, 255, 255);
//max_level 绘制轮廓的最大等级。如果等级为0,绘制单独的轮廓。如果为1,绘制轮廓及在其后的相同的级别下轮廓。
//如果值为2,所有的轮廓。如果等级为2,绘制所有同级轮廓及所有低一级轮廓,诸此种种。
//如果值为负数,函数不绘制同级轮廓,但会升序绘制直到级别为abs(max_level)-1的子轮廓。
//cvDrawContours(dst, contour, color, color, -1, 1, 8);//绘制外部和内部的轮廓
}
contour = _contour; /*int k=0;*/
//统计剩余轮廓,并画出最大面积的轮廓
int count = 0;
for (; contour != 0; contour = contour->h_next)
{
count++;
double tmparea = fabs(cvContourArea(contour));
if (tmparea == maxarea /*k==n*/)
{
CvScalar color = CV_RGB(255, 0, 0);
cvDrawContours(dst, contour, color, color, -1, 1, 8);
}
/*k++;*/
}
printf("The total number of contours is:%d", count);
cvNamedWindow("Components", CV_WINDOW_NORMAL);
cvShowImage("Components", dst);
cvSaveImage("dst.jpg", dst);
//roateProcess(dst);
cvWaitKey(0);
//销毁窗口和图像存储
cvDestroyWindow("Source");
cvReleaseImage(&src);
cvDestroyWindow("Components");
cvReleaseImage(&dst);
}
/******************遍历图像-指针算法********************/
bool find_point(IplImage *img, char val)
{
char* ptr = NULL;
if (img->nChannels == 1)
{
ptr = img->imageData;
if (ptr != NULL)
{
for (int i = 0; i < img->height; i++) //矩阵指针行寻址
{
ptr = (img->imageData + i*(img->widthStep)); //i 行 j 列
for (int j = 0; j < img->width; j++) //矩阵指针列寻址
{
if (ptr[j] == val) //判断某点像素是否为255
{
Current_Point.x = j;
Current_Point.y = i;
return true;
}
}
}
}
}
return false;
}
void Create_Imask(IplImage *src, IplImage *dst)
{
int Last_Area = 0; //上一个区域面积
int Current_Area = 0; //当前区域面积
int threshold_type = CV_THRESH_BINARY; //阈值类型
CvPoint Last_Point; //值为255点的上一点
CvConnectedComp comp; //被填充区域统计属性
IplImage *gray, *threshold, *temp,*open; //灰度图像
Last_Point = cvPoint(0, 0); //初始化上一点
Current_Point = cvPoint(0, 0); //初始化当前点
gray = cvCreateImage(cvGetSize(src), src->depth, 1);
threshold = cvCreateImage(cvGetSize(src), src->depth, 1);
temp = cvCreateImage(cvGetSize(src), src->depth, 1);
open = cvCreateImage(cvGetSize(src), src->depth, 1);
cvCvtColor(src, gray, CV_BGR2GRAY); //源图像->灰度图像
//二值阈值化
cvThreshold(gray, threshold, 100, 255, threshold_type);
//开运算,去除小亮区域,其他联结 NULL:3*3参考点为中心的核
cvMorphologyEx(threshold, open, temp, NULL, CV_MOP_OPEN, 1);
cvNamedWindow("肤色模板", 1);
cvNamedWindow("肤色掩码", 1);
cvShowImage("肤色模板", src);
cvShowImage("肤色掩码", dst);
//漫水填充 获得手掌掩码
cvCopy(open, dst); //复制生成手掌掩码
do
{
if (find_point(dst, 255)) //找像素值为255的像素点
{
cout << " X: " << Current_Point.x << " Y: " << Current_Point.y << endl;
cvFloodFill(dst, Current_Point, cvScalar(100), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //对值为255的点进行漫水填充,值100
Current_Area = comp.area; //当前区域面积
if (Last_Area<Current_Area) //当前区域大于上一区域,上一区域清0
{
if (Last_Area>0)
cvFloodFill(dst, Last_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //上一区域赋值0
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
Last_Area = Current_Area; //当前区域赋值给上一区域
Last_Point = Current_Point; //当前点赋值给上一点
}
else //当前区域小于等于上一区域,当前区域清0
{
if (Current_Area>0)
cvFloodFill(dst, Current_Point, cvScalar(0), cvScalar(0), cvScalar(0),
&comp, 8 | CV_FLOODFILL_FIXED_RANGE); //当前区域赋值0
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
}
}
else //最后剩余的最大区域赋值255
{
cvFloodFill(dst, Last_Point, cvScalar(255), cvScalar(0), cvScalar(0), &comp, 8 | CV_FLOODFILL_FIXED_RANGE);
cvShowImage("肤色掩码", dst);
cvWaitKey(500);
//上一区域赋值0
break;
}
} while (true);
//cvSaveImage("Imask.jpg", dst);
cvReleaseImage(&gray);
cvReleaseImage(&threshold);
cvReleaseImage(&temp);
cvReleaseImage(&open);
}
void Find_Hand_Region(IplImage *model, IplImage *test, IplImage *mask, IplImage *dst)
{
int threshold_type = CV_THRESH_BINARY; //阈值类型
//临时图像 反向投影图像
IplImage *temp = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *back_projection = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
//RGB
IplImage *r_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_1 = cvCreateImage(cvSize(model->width, model->height), IPL_DEPTH_8U, 1);
IplImage *r_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *g_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *b_plane_2 = cvCreateImage(cvSize(test->width, test->height), IPL_DEPTH_8U, 1);
IplImage *planes1[] = { r_plane_1, g_plane_1, b_plane_1 }; //色相饱和度数组
IplImage *planes2[] = { r_plane_2, g_plane_2, b_plane_2 }; //色相饱和度数组
cvCvtPixToPlane(model, b_plane_1, g_plane_1, r_plane_1, NULL); //图像分割
cvCvtPixToPlane(test, b_plane_2, g_plane_2, r_plane_2, NULL); //图像分割
int r_bins = 32, g_bins = 32, b_bins = 32;
//建立直方图
CvHistogram *hist_model, *hist_test;
int hist_size[] = { r_bins, g_bins, b_bins }; //对应维数包含bins个数的数组
float r_ranges[] = { 0, 255 }; //R通道划分范围
float g_ranges[] = { 0, 255 }; //G通道划分范围
float b_ranges[] = { 0, 255 }; //R通道划分范围
float* ranges[] = { r_ranges, g_ranges, b_ranges }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(3, hist_size, CV_HIST_ARRAY, ranges, 1);
cvCalcHist(planes1, hist_model, 0, mask); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_test, 0, 0); //计算直方图(图像,直方图结构,不累加,掩码)
//cvNormalizeHist(hist_model, 1.0); //直方图归一化
//cvNormalizeHist(hist_test, 1.0); //直方图归一化
//像素点的反射投影 创建测试hist的图像数组 结果图像 模板hist
cvCalcBackProject(planes2, back_projection, hist_model);
cvSmooth(back_projection, dst, CV_MEDIAN, 11); //中值滤波 去除椒盐噪声
//开运算,去除小亮区域,其他联结 NULL:3*3参考点为中心的核
cvMorphologyEx(dst, dst, temp, NULL, CV_MOP_OPEN, 1);
cvThreshold(dst, dst, 0, 255, threshold_type); //二值阈值化
//边缘检测 src dst 边缘连接 边缘初始分割 核
//cvCanny(dst, dst,90,180,3);
//得到手掌轮廓 绘制轮廓线
//getContoursByC(dst, dst);
cvShowImage("BACK_Projection", back_projection);
cvShowImage("Destination", dst);
//cvSaveImage("DST.jpg", dst);
cvReleaseHist(&hist_model);
cvReleaseHist(&hist_test);
cvReleaseImage(&back_projection);
cvReleaseImage(&temp);
cvReleaseImage(&r_plane_1);
cvReleaseImage(&g_plane_1);
cvReleaseImage(&b_plane_1);
cvReleaseImage(&r_plane_2);
cvReleaseImage(&g_plane_2);
cvReleaseImage(&b_plane_2);
}
void Create_Hist_1D(IplImage* src, IplImage* canny, IplImage* gradient_dir, IplImage* hist_img)
{
IplImage *sobel_x, *sobel_y;
sobel_x = cvCreateImage(cvSize(src->width, src->height), 32, 1);
sobel_y = cvCreateImage(cvSize(src->width, src->height), 32, 1);
//边缘检测, src dst 边缘连接 边缘初始分割 核
cvCanny(src, canny, 60, 180, 3);
//方向导数
cvSobel(src, sobel_x, 1, 0, 3); //横向偏导dx
cvSobel(src, sobel_y, 0, 1, 3); //纵向偏导dy
//梯度方向 dy/dx
cvDiv(sobel_y, sobel_x, gradient_dir);
char* ptr = NULL;
float theta = 0.0; //梯度方向角
ptr = gradient_dir->imageData;
if (ptr != NULL)
{
for (int i = 0; i < gradient_dir->height; i++) //矩阵指针行寻址
{
ptr = (gradient_dir->imageData + i*(gradient_dir->widthStep)); //i 行 j 列
for (int j = 0; j < gradient_dir->width; j++) //矩阵指针列寻址
{
if (cvGetReal2D(canny, i, j) && cvGetReal2D(sobel_x, i, j)) //dx!=0
{
theta = cvGetReal2D(gradient_dir, i, j);
theta = atan(theta);
cvSetReal2D(gradient_dir, i, j, theta);
}
else //dx=0
{
cvSetReal2D(gradient_dir, i, j, 0);
}
}
}
}
float max = 0.0;
int bins = 20;
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { -CV_PI / 2, CV_PI / 2 };
float* ranges[] = { range };
CvHistogram* hist = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
cvZero(hist_img);
IplImage *planes[] = { gradient_dir }; //梯度图像数组
cvCalcHist(planes, hist, 0, canny); //只计算边界直方图
cvGetMinMaxHistValue(hist, 0, &max, 0, 0);
//src dst scale shift 缩放bin到[0,255] (条件表达式 ? 真值 : 假值)
cvConvertScale(hist->bins, hist->bins, max ? 255. / max : 0., 0);
//绘制直方图
double bin_width = (double)hist_img->width / bins * 3 / 4;
for (int i = 0; i<bins; i++)
{
double val = cvGetReal1D(hist->bins, i)*hist_img->height / 255;
CvPoint p0 = cvPoint(30 + i*bin_width, hist_img->height);
CvPoint p1 = cvPoint(30 + (i + 1)*bin_width, hist_img->height - val);
cvRectangle(hist_img, p0, p1, cvScalar(0, 255), 1, 8, 0);
}
cvReleaseHist(&hist); //释放直方图
cvReleaseImage(&sobel_x);
cvReleaseImage(&sobel_y);
}
void Compare_Gesture_Hist(IplImage *sobel1, IplImage *sobel2, IplImage *test, IplImage** canny, IplImage* hist_img)
{
//建立直方图
CvHistogram *hist_model1, *hist_model2, *hist_test;
int bins = 20;
int hist_size[] = { bins }; //对应维数包含bins个数的数组
float range[] = { -CV_PI / 2, CV_PI / 2 };
float* ranges[] = { range }; //划分范围数对, ****均匀bin,range只要最大最小边界
//创建直方图 (维数,对应维数bins个数,密集矩阵方式存储,划分范围数对,均匀直方图)
hist_model1 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_model2 = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
hist_test = cvCreateHist(1, hist_size, CV_HIST_ARRAY, ranges, 1);
IplImage *planes1[] = { sobel1 };
IplImage *planes2[] = { sobel2 };
IplImage *planes3[] = { test };
cvCalcHist(planes1, hist_model1, 0, canny[0]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes2, hist_model2, 0, canny[1]); //计算直方图(图像,直方图结构,不累加,掩码)
cvCalcHist(planes3, hist_test, 0, canny[2]); //计算直方图(图像,直方图结构,不累加,掩码)
cvNormalizeHist(hist_model1, 1.0); //直方图归一化
cvNormalizeHist(hist_model2, 1.0); //直方图归一化
cvNormalizeHist(hist_test, 1.0); //直方图归一化
//比较直方图
for (int j = 0; j < 4; j++)
{
double value1 = cvCompareHist(hist_test, hist_model1, j); //相关方式比较
double value2 = cvCompareHist(hist_test, hist_model2, j); //相关方式比较
//if (j == 0)
//{
// std::printf(" Hist_test & Hist_model1 ,CV_COMP_CORREL: %lf;\n", value1);
// std::printf(" Hist_test & Hist_model2 ,CV_COMP_CORREL: %lf;\n", value2);
//}
if (j == 1)
{
std::printf(" Hist_test & Hist_model1 ,CV_COMP_CHISQR: %lf;\n", value1);
std::printf(" Hist_test & Hist_model2 ,CV_COMP_CHISQR: %lf;\n", value2);
if ((value1 <= 0.25) && (value2 >= 0.55))
{
cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(255, 0, 0), CV_FILLED, 8);
}
if ((value1 >= 0.45) && (value2 <= 0.4))
{
cvDrawRect(hist_img, cvPoint(100, 100), cvPoint(200, 200), cvScalar(0, 0, 255), CV_FILLED, 8);
}
}
//if (j == 2)
//{
// std::printf(" Hist_test & Hist_model1 ,CV_COMP_INTERSECT: %lf;\n", value1);
// std::printf(" Hist_test & Hist_model2 ,CV_COMP_INTERSECT: %lf;\n", value2);
//}
//if (j == 3)
//{
// std::printf(" Hist_test & Hist_model1 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value1);
// std::printf(" Hist_test & Hist_model2 ,CV_CCOMP_BHATTACHARYYA: %lf;\n", value2);
//}
std::printf("\n");
}
cvReleaseHist(&hist_model1);
cvReleaseHist(&hist_model2);
cvReleaseHist(&hist_test);
}
http://www.jiaoanw.com/%E6%95%99%E6%A1%88%E6%A0%BC%E5%BC%8F/article-43870-10.html
http://www.jiaoanw.com/
true
教案网
http://www.jiaoanw.com/%E6%95%99%E6%A1%88%E6%A0%BC%E5%BC%8F/article-43870-10.html
report
37738
运行结果如下图: 尝试识别手势。从摄像机中获取一个2英尺的手的图像,建立一些手势(不能动):手掌竖直和手掌水平。 1. 利用例11得到的结果,在手
必须予以坚决的回击