您现在的位置:首页 > 教案格式 > 正文

五个中国数学家的故事(2)

2019-05-18 03:12 网络整理 教案网

4.祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.

熊庆来教育思想与实践探究_数学家熊庆来的故事_熊庆来故居

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊。祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--" 割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得&pi。三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,。

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.。祖冲之在数学上的杰出成就,是关于圆周率的计算. 祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.。这些历法中,有的曾经对中国的文明文化产生过重大影响,比如夏历、商历、周历、西汉太初历、隋唐大衍历和皇极历等,有的历法虽然没有正式使用过,但是,其依然对中国的养生、医学、思想学术、天文、数学等起到过重大作用,比如西汉末期的三统历法和唐朝的皇极历法等。

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".。”意即:位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。

5.陈省身

陈省身1911年10月28日生于浙江嘉兴秀水县,美籍华人,20世纪世界级的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。数学家熊庆来的故事他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。晚年情系故园,每年回天津南开大学数学研究所主持工作,培育新人,只为实现心中的一个梦想:使中国成为21世纪的数学大国。

陈省身9岁考入秀州中学预科一年级。这时他已能做相当复杂的数学题,并且读完了《封神榜》、《说岳全传》等书。1922年秋,父亲到天津法院任职,陈省身全家迁往天津,住在河北三马路宙纬路。第二年,他进入离家较近的扶轮中学(今天津铁路一中)。陈省身在班上年纪虽小,却充分显露出他在数学方面的才华。陈省身考入南开大学理科那一年还不满15岁。他是全校闻名的少年才子,大同学遇到问题都要向他请教,他也非常乐于帮助别人。一年级时有国文课,老师出题做作文,陈省身写得很快,一个题目往往能写出好几篇内容不同的文章。同学找他要,他自己留一篇,其余的都送人。到发作文时他才发现,给别人的那些得的分数反倒比自己那篇要高。

他不爱运动,喜欢打桥牌,且牌技极佳。图书馆是陈省身最爱去的地方,常常在书库里一呆就是好几个小时。他看书的门类很杂,历史、文学、自然科学方面的书,他都一一涉猎,无所不读。入学时,陈省身和他父亲都认为物理比较切实,所以打算到二年级分系时选物理系。但由于陈省身不喜欢做实验,既不能读化学系,也不能读物理系,只有一条路——进数学系。

数学系主任姜立夫,对陈省身的影响很大。数学系1926级学生只有5名,陈省身和吴大任是全班最优秀的。吴大任是广东人,毕业于南开中学,被保送到南开大学。他原先进物理系,后来被姜立夫的魅力所吸引,转到了数学系,和陈省身非常要好,成为终生知己。姜立夫为拥有两名如此出色的弟子而高兴,开了许多门在当时看来是很高深的课,如线性代数、微分几何、非欧几何等等。二年级时,姜立夫让陈省身给自己当助手,任务是帮老师改卷子。起初只改一年级的,后来连二年级的都让他改,另一位数学教授的卷子也交他改,每月报酬10元。第一次拿到钱时,陈省身不无得意,这是他第一次的劳动报酬啊!

考入南开后,陈省身住进八里台校舍。每逢星期日,他从学校回家都要经过海光寺,那里是日本军营。看到荷枪实弹的日本鬼子那副耀武扬威的模样,他心里很不是滋味,不禁快步走开。再往前便是南市“三不管”,是个乌烟瘴气的地方,令他万分厌恶。从家返回学校时,又要经过南市、海光寺,直到走进八里台校园,他才感到松了口气。

五个中国数学家的故事