您现在的位置:首页 > 教案格式 > 正文

什么是单项式_什么是单项式的系数_什么是单项式和多项式(2)

2017-01-03 00:02 网络整理 教案网

9、整式:单项式和多项式统称整式。

10、同类项:所含字母相同,并且相同字母的次数也相同的项,叫做同类项.

11、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.

合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.

12、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号; 括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.

13、整式的加减:整式加减的一般步骤:

1.如果遇到括号,按去括号法则先去括号; 2.合并同类项.

第三章 一元一次方程

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. n

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表

示为:如果a=b,那么a±c=b±c

(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用

ab式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么= cc

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1、 去分母(方程两边同乘各分母的最小公倍数)

2、去括号(按去括号法则和分配律)

3、 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4、合并(把方程化成ax = b (a≠0)形式)

b5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解 a

六、用方程思想解决实际问题的一般步骤

1、 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2、设:设未知数(可分直接设法,间接设法)

3、找:找出题目中的等量关系

4、 列:根据等量关系列方程.

5、 解:解出所列方程.

6、 检:检验所求的解是否符合题意.

7、 答:写出答案(有单位要注明答案)

七、有关常用应用类型题及各量之间的关系

1、 和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增

长率??”来体现.

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余??”来体现.

2、 等积变形问题:

“等积变形”是以形状改变而体积不变为前提.常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积.

3、劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变

4、 数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为(其中a、cb、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.