《化学工程与工艺专业英语》课文翻译Unit 10 What Is Chemical Engineering(3)
由于不满意对工艺设备运行的经验描述,化学工程师开始从更基础的角度 再审视单元操作。 发生在单元操作中的现象可以分解到分子运动水平。 这些运动的定量机械 模型被建立并用于分析已有的仪器设备。 过程和放应器的数学模型也被建立并被应用于资金 密集型的美国工业如石油化学工业。 Parallel to the growth of the engineering science movement was the evolution of the core chemical engineering curriculum in its present form. Perhaps more than any other development, the core curriculum is responsible for the confidence with which chemical engineers integrate knowledge from many disciplines in the solution of complex problems. 与工程学同时发展的是现在的化学工程课程设置的变化。
也许与其它发展相比较,核心 课程为化学工程师运用综合技能解决复杂问题更加提供了信心。 The core curriculum provides a background in some of the basic sciences, including mathematics, physics, and chemistry. This background is needed to undertake a rigorous study of the topics central to chemical engineering, including: 核心课程固定了一些基础科学为背景,包括数学,物理,和化学。这些背景对于从事以 化学工程为中心的课题的艰苦研究是必须的,包括: ·Multicomponent thermodynamics and kinetics, ·Transport phenomena, ·Unit operations, ·Reaction engineering, ·Process design and control, and ·Plant design and systems engineering. ·多组分体系热力学及动力学 ·传输现象 ·单元操作 ·反应工程 ·过程设计和控制 ·工厂设计和系统工程 This training has enabled chemical engineers to become leading contributors to a number of interdisciplinary areas, including catalysis, colloid science and technology, combustion, electro-chemical engineering, and polymer science and technology. 这种训练使化学工程师们成为了在许多学科领域做出了突出贡献的人,包括在催化学、 胶体科学和技术、燃烧、电化学工程、以及聚合物科学和技术方面。
2. Basic Trends In Chemical Engineering Over the next few years, a confluence of intellectual advances, technologic challenges, and economic driving forces will shape a new model of what chemical engineering is and what chemical engineering do. 2. 化学工程学的基本发展趋势 未来几年里, 科学的进步, 技术的竞争以及经济的驱动力将为化学工程是什么以及化学工程能做什么打造一个新的模型。 The focus of chemical engineering has always been industrial processes that change the physical state or chemical composition of materials. Chemical engineers engage in the synthesis, design, testing scale-up, operation, control and optimization of these processes. The traditional level of size and complexity at which they have worked on these problems might be termed the mesoscale. Examples of this scale include reactors and equipment for single processes (unit operations) and combinations of unit operations in manufacturing plants. Future research at the mesoscale will be increasingly supplemented by dimensions—the microscale and the dimensions of extremely complex systems—the macroscale. 化学工程学的焦点一直是改变物体的物理状态或化学性质的工业过程。
化学工程师致力 于这些过程的合成、设计、测试放大、操作、控制和优选。他们从事于解决的这些问题,传 统的规模水平和复杂程度可称之为中等的,这种规模的例子包括有单个过程(单元操作)所 使用的反应器和设备以及制造厂里单元操作的组合,未来的研究将在规模上逐渐进行补充。 除了中等规模,还有微型的以及更为复杂的系统----巨型的规模。 Chemical engineers of the future will be integrating a wider range of scales than any other branch of engineering. For example, some may work to relate the macroscale of the environment to the mesoscale of combustion systems and the microscale of molecular reactions and transport. Other may work to relate the macroscale performance of a composite aircraft to the mesoscale chemical reactor in which the wing was formed, the design of the reactor perhaps having been influenced by studies of the microscale dynamics of complex liquids. 未来的化学工程师将比任何其他分支的工程师在更为宽广的规模范围紧密协作。
例如, 有些人可能从事于了解大范围的环境与中等规模的燃烧系统以及微型的分子水平的反应和 传递之间的关系。 另一些人则从事了解合成的飞机的的性能与机翼所用化学反应器及反应器 的设计和对此有影响的复杂流体动力学的研究工作。 Thus, future chemical and engineers will conceive and rigorously solve problems on a continuum of scales ranging from microscale. They will bring new tools and insights to research and practice from other disciplines: molecular biology, chemistry, solid-state physics, materials science, and electrical engineering. And they will make increasing use of computers, artificial intelligence, and expert system in problem solving, in product and process design, and in manufacturing. 因此, 未来的化学工程师们要准备好解决从微型的到巨型的规模范围内出现的问题。
他 们要用来自其它学科的新的工具和理念来研究和实践:分子生物学,化学,固体物理学化学工程与工艺英语翻译,材 料学和电子工程学。他们还将越来越多地使用计算机、人工智能以及专家系统来解决问题, 进行产品和过程设计,生产制造。 Two important development will be part of this unfolding picture of the discipline. Chemical engineers will become more heavily involved in product design as a complement to process design. As the properties of a product in performance become increasingly linked to the way in which it is processed, the traditional distinction between product and process design will become blurred. There will be a special design challenge in established and emerging industries that produce proprietary, differentiated products tailored to exacting performance specifications.These products are characterized by the need for rapid innovatory ad they are quickly superseded in the marketplace by newer products. 在这个学科中还有两个重要的发展是我们前面没有提到的: 化学工程师将越来越多地涉及到对过程设计进行补充的产品设计中。
至于你说可取代性,至少硬件领域,我看很多专利的东西其实也有取代性,人家照收专利不误。: 至于你说可取代性,至少硬件领域,我看很多专利的东西其实也有取代性,人家照收专利不误。(三)在产品说明书等材料中将未被授予专利权的技术或者设计称为专利技术或者专利设计,将专利申请称为专利,或者未经许可使用他人的专利号,使公众将所涉及的技术或者设计误认为是他人的专利技术或者专利设计的,立即停止发放该材料,销毁尚未发出的材料,并消除影响。
化学工程师参与跨学科研究与化 学科学、特种工业进行合作具有悠久的历史。随着工程学与分子科学最紧密地联系在一起, 化学工程学的地位也越来越崇高。因为如化学、分子生物学、生物医学以及固体物理这样的 科学都是为明天的科学技术提供种子,作为“界面科学” ,化学工程学具有光明的未来,它 将在多学科领域中搭建科学和工程学之间的桥梁,而在这里将出现新的工业技术。
养兵千日用兵一时