您现在的位置:首页 > 教案下载 > 正文

量子通讯速度 喵星人可能早就发展出了引力波探测技术,否则为什么每次我刚想倒(2)

2018-02-07 03:02 网络整理 教案网

迈克尔孙-莫雷实验,本来以为会观测到干涉条纹,结果却是没有干涉条纹

许多科学家对此提出了种种解释,但都是小修小补,只在这里打块补丁,顾不上其他地方,结果是左支右绌,把整个物理学体系搞得矛盾百出。1905年,爱因斯坦迈出了革命性的一步。他提议,“光速在所有的参照系中都不变”应该作为一条基本原理,而不是一个要从其他原理推出的结论。

爱因斯坦:大家好,我来了

一旦迈出这一步,后面的推理就顺理成章了。根据光速不变原理,再加上一条“相对性原理”(在所有的惯性参照系即做匀速直线运动的参照系中,物理规律都具有相同的形式),爱因斯坦就推出了整个狭义相对论。

根据狭义相对论,可以得到许多惊人的结果,例如钟慢效应(在运动的参照系中时间流逝得比静止的参照系中慢)、尺缩效应(在运动的参照系中距离比静止的参照系中短)。

而所有结果中最惊人的,是质能关系E = mc2(这里c是光速,约等于30万公里每秒),一个体系包含的能量等于它的质量乘以光速的平方。能量和质量在某种意义上是一回事,只差一个常数因子。

根据质能关系,只要知道任何一个过程(例如核反应)前后的质量差,就可以预测这个过程放出的能量,都不需要知道过程的细节。这正是核武器的基本原理。所以对于怀疑狭义相对论的人(尤其是热衷于推翻相对论的民科),我们可以提出一个非常硬的证明,就是核武器!

广岛和长崎的原子弹爆炸

狭义相对论使我们对时空的理解,也发生了深刻的变化。在牛顿力学中,时间就是时间,空间就是空间,两者不会混合到一起。而在狭义相对论中,时间和空间必不可免地会混合到一起。

对此最方便的理解,是回顾一下高中学的解析几何。在解析几何中,如果你把坐标系旋转一下,就可以把新的坐标轴方向x′、y′变成旧的坐标轴方向x、y的组合。但无论你采用什么坐标系,解题时都会得到相同的结果。所以任何一个单独的坐标轴方向都不重要,真正重要的只是它们的组合。

坐标系的旋转,把新的坐标轴方向x′、y′变成旧的坐标轴方向x、y的组合

同样的,在狭义相对论中,换一个参照系就可以把时间部分地变成空间,把空间部分地变成时间,所以时间和空间各自都不重要,真正重要的是它们的整体,即“时空”。原来的一维时间、三维空间,整合成了四维的时空。钟慢效应、尺缩效应、质能关系等等,原因都在于这个新的时空观。

狭义相对论表明了,所有的惯性参照系都是等价的,物理规律在所有的惯性参照系中都具有相同的形式。下一个问题自然就是,非惯性的参照系怎么办?我们能不能构造一种理论,使得物理规律在所有的参照系中都具有相同的形式,无论它们是不是惯性参照系?

非惯性的参照系,就是存在加速度的参照系。爱因斯坦注意到,一个质量为m的物体受到的万有引力正比于m,而由此产生的加速度等于引力除以质量,把m又除掉了,所以跟m无关。因此,一个非惯性参照系跟一个引力场,在物理上是等价的。

举个例子,如果你置身于一艘远离任何星球的宇宙飞船之中,它的加速度等于地球上的重力加速度,那么你看到的现象将跟在地面上完全一样。你会感到向下的重力,所有的物体会自发地往下掉。如果不向外看,你无法判断你是在地球上,还是在这样一艘飞船里。

引力场和非惯性参照系的等价性,叫做“等效原理”。爱因斯坦从这个原理出发,把狭义相对论推广成了广义相对论。

爱因斯坦:大家好,我又来了

狭义相对论的数学比较简单,基本的微积分就够了,甚至不用微积分、只用高中数学都能得到大半。而广义相对论的数学就非常复杂,要用到“微分几何”,连大学物理系里非理论物理专业的学生都大多不会,爱因斯坦本人也是在推导的过程中找数学家朋友现学的。

但最重要的是,这样一套复杂的理论居然推导出来了,而且经过许多实验的验证,证实它非常精确。凡是广义相对论跟牛顿力学预测不同的地方,全都是广义相对论正确,牛顿力学错误。