阴离子交换树脂含铬废水中的铬主要来源于电镀、制革、化工、颜料(3)
由于Cr3+ 与Fe3+ 具有相同的离子电荷和相近的离子半径,在铁氧体形成的过程中,Cr3+ 取代Fe3+成为铁氧体的组成部分,从而达到去除Cr(Ⅵ)
的目的。反应见式(10)和式(11)。
2Cr3++Fe2++8OH-→FeO·Cr2O3↓+4H2O(10)
6Fe3++3Fe2++24OH-→3FeO·Fe2O3↓+12H2O (11)
魏振枢分别从FeSO4·7H2O的投加量、反应的酸碱度控制和加热与曝气几个方面对铁氧体法处理含铬废水的工艺条件进行了探讨〔30〕。来风习等〔31〕为了克服铁氧体法的缺陷,用一种复合方法超声波-铁氧体法处理含铬废水,结果Cr6+去除率达到99.9%以上,这就从节能和经济的角度让传统铁氧体法得以优化。
2.3电解法电解法使废水中的有害物质通过电解过程在阳、阴两极发生氧化和还原反应,或利用电极氧化和还原的产物与废水中的有害物质发生化学反应,使有害物质转化为无害物质或生成不溶于水的物质,从水中除去。电解法除铬用铁作阴极和阳极,阳极溶解产生的Fe2+将Cr(Ⅵ)还原为Cr(Ⅲ),阴极附近由于H+不断还原为H2,溶液逐渐显碱性,Fe3+和Cr(Ⅲ)生成Cr(OH)3沉淀,从而除去废水中的Cr(Ⅵ)。发生的化学反应见式(12)~式(17)。
阳极反应:Fe-2e-→Fe2+ (12)
Cr6++3Fe2+→Cr3++3Fe3+ (13)
阴极反应:2H2O+2e-→H2+2OH- (14)
沉淀反应:Cr3++3OH-→Cr(OH)3↓ (15)
Fe3++3OH-→Fe(OH)3↓ (16)
Fe2++2OH-→Fe(OH)2↓ (17)
赵丽等分别从废液浓度、pH值、反应时间和换极周期4个因素考虑,利用正交试验对电解法处理含铬废水进行了研究,认为在工业废水Cr(Ⅵ)初始质量浓度较高(不小于300mg/L)时,单纯依靠普通的铁板阳极溶解的Fe2+还不能够充分还原Cr(Ⅵ),需加一定的还原剂,当废水初始质量浓度不高于600mg/L、pH值为3、反应时间为40min和换极周期为10 min 时,且根据前期正交试验(Fe2+与Cr2O7质量浓度比为1∶1)确定加入的FeSO4量的反应条件下,去除率可达94%以上〔32〕。电解法由于有沉淀和絮体的生成,需要过滤工艺,且阴极附近氢气的生成会影响它们的沉降,GaoP等为了解决这一问题,设计了电絮凝-电浮选联合工艺,省去了过滤步骤,利用电解-电浮选产生的气泡有效地使絮体浮出水面,从而达到去除的目的〔33〕。
3生物处理技术生物法处理废水一直是水处理领域研究的热点,因为它具有资源丰富、效率高、投资低、选择性强以及不产生二次污染等优点。生物法处理含铬废水主要包括氧化还原、离子交换、形成配位化合物和静电吸引等机理,主要以投加生物吸附剂和生物絮凝剂的方式来完成。
3.1生物吸附法大量研究证实,具有生物活性的生物体及非活性的生物质均具有较强的生物吸附性能。应用死的微生物细胞吸附去除污染物具有一定的优越性,它不会受到废水中毒性物质的影响,不需要持续不断地提供养分,且可以再生再利用。近几年国内外对含铬废水的处理焦点多集中在生物吸附法上,通过寻找合适的废生物质材料吸附铬等重金属,这些生物质材料包括木屑、玉米芯、板栗壳、咖啡渣、橄榄渣、椰子皮、苔藓、核桃壳及其改性产品等〔34-38〕。
ElNemrA 等从反应体系的pH值水平、污染物含量、吸附剂用量及吸附时间几个方面研究了鸡毛菜(海洋红藻)及其生物质活性炭对废水中铬去除效果的影响,结果表明,在溶液pH值为1时吸附量最大,两者最大的吸附能力为12和66mg/g〔39〕。
敢进领海一个毫米就打你个满地找牙