您现在的位置:首页 > 教案下载 > 正文

宇宙 量子通讯 光速并非恒定 而是越来越慢?(2)

2018-01-14 01:02 网络整理 教案网

然而,光速可变理论的支持者称,如果早期宇宙中的光速远高于当今宇宙,则无需借助暴胀,就能解决视界问题。如此一来,宇宙相距甚远的两端能够在宇宙膨胀的过程中保持“连通”,从而导致宇宙各处的微波背景辐射均匀一致。

然而,对于支持暴胀宇宙模型的理论物理学家来说,允许光速发生变化,就如同颠倒狭义相对论中的一个正负号。

“多数情况下,这种颠倒符号的事情,会导致一些灾难性的后果,因为改变后的理论可能无法在物理上自洽。”剑桥大学理论宇宙学中心的高级研究人员David Marsh说道,他没有参与该论文的工作。“Magueijo等人提到了一些随之而来的挑战,但要想构建真正健全的理论模型,还有许多工作要做。如果光速可变理论真的能够站住脚,那么它不仅仅会影响宇宙学,还会对整个物理学产生许多深远的影响。”

那么,在宇宙大爆炸刚刚发生不久时,光速究竟比现在快多少呢?Magueijo和他的同事、滑铁卢大学物理学与天文学助理教授Niayesh Afshordi给出的答案是:快无限多倍。

两位物理学家指出,早期宇宙中的光速至少比现在30万千米/秒的光速快32个数量级,而这只是一个下限值。随着时间趋近于宇宙大爆炸的时刻,光速也将趋向于无穷大。

按照光速可变的观点来看,光速偏快是因为早期宇宙温度极高。Afshordi指出,他们的理论要求早期宇宙是一个温度至少达1028摄氏度的火炉。相比之下,人类在地球上所能获得的最高温度只有1016摄氏度,与早期宇宙相差12个数量级之多。

随着宇宙膨胀,其温度降低到1028摄氏度以下。就如同液态水温度降低到一定程度以后会结冰一样,光在此经历了一次相变,光速变成当前的30万千米/秒。冰不会因温度更低而更坚硬,光速也不会因温度更低而变得更慢,于是从那以后光就保持在这个值而不再变化。

如果Magueijo和Afshordi的光速可变理论是正确的,那么我们就可以预测光速变慢的过程,这也就意味着只要有足够精密的测量装置,我们就可以测量光速的衰减。这正是他们最新论文中的内容。

Afshordi介绍说,星系以及宇宙中的其他结构之所以能够存在,乃是因为早期宇宙的密度存在涨落。这些密度涨落体现为宇宙微波背景辐射的“谱指数”(spectral index),我们可以把它想象成早期宇宙的不同“颜色”。谱指数的中央基准值为1,对应于一个各个尺度上引力涨落大小均相同的宇宙。谱指数高于1,宇宙就是“蓝色”的,代表着偏向于短波长的涨落;谱指数低于1,宇宙就是“红色”的,代表着偏向于长波长的涨落。宇宙 量子通讯

尽管暴胀宇宙模型中也包含红色的谱指数,但无法精确地计算出谱指数的值,因而也就无法计算出早期宇宙中引力涨落的精确值。在新论文中,Magueijo和Afshordi给出谱指数为0.96478,略微偏红,这一结果比目前测量到的谱指数(约为0.968)精确两个数量级。

既然两位物理学家已经用光速可变理论推导出了谱指数的更严格的结果,那么接下来要做的就是提高实验精度来探测宇宙微波背景辐射以及星系在宇宙空间中的分布,看能否将光速可变理论证实或证伪。Magueijo和Afshordi两人预计,在2020年之前就会有足够精确的探测结果,但Marsh和其他物理学家仍持谨慎态度。

“与暴胀理论相比,Afshordi与Magueijo的模型还很复杂,我们尚未很好地理解它,”Marsh说道,“不过,我们对暴胀理论的理解已经发展了超过35年,其中也仍有开放的理论问题有待解决。只要投入更多的时间与研究精力,光速可变模型的理论基础当然有可能得到更深入的理解,它所做出的理论预言也会更加优美。”