您现在的位置:首页 > 教案下载 > 正文

中微子振荡现象 基础物理突破大奖: 揭秘王贻芳与大亚湾中微子实验[好网角文章(2)

2018-01-04 11:04 网络整理 教案网

光学振荡现象_中微子振荡现象_超级神冈探测器

2012年3月,在北京的中国科学院高能物理研究所,王贻芳与紧张展开着战斗。中微子振荡现象总数接近300人的研究团队经过55天不眠不休的不断摸索之后收集到了实验数据。不可能出现错误。在带着祈祷进行分析时,计算公式显示出可靠的趋势——以99.9999%以上的精度确定了“第三种中微子振荡”。

作为基本粒子,中微子是构成物质的最小单位之一。在物理学和天文学领域,这是全世界研究人员等都在竞相获取成果的最尖端研究主题。在日本,东京大学特别荣誉教授小柴昌俊以此荣获诺贝尔奖,并由此广为人知。王贻芳等人发现的是在这些中微子研究中被视为“最后的未知数”的物理现象。

构成物质世界的12种最基本粒子,其中3种为中微子

然而早在大亚湾中微子实验项目之初,整个工程估算下来至少需要1.5亿元。王贻芳拿出自己的“百人计划”人才基金,加上高能所特批的几十万元也只有百万元,相比亿元只是杯水车薪。没办法,他只好一个一个“找支持”,最终,包括科技部在内的6家单位共同出资1.57亿元。

尽管“第三种振荡”变化非常小,甚至被视为“或许并不存在”,但王贻芳充满信心:“因为合作者很多,而且实验设备精良!”不过,大亚湾中微子项目的主要合作方中国、美国却在实验方案上出现了分歧:若按照美国的方案走,可以争取到国际合作,但中方的贡献和地位就有限;反之,可能就没有国际合作,项目可能根本无法在国内立项。王贻芳在最关键的时刻顶住了压力,单刀赴会,舌战群儒,“我坚信我的方案最正确。而且中国要花这么多钱,如果把方案让给你们,这种事情绝对不能做!”虽然这次碰撞并不算愉快,但从结果上看,王贻芳为中国保住了中微子实验的主导权。

其实,所有的努力或许都来自王贻芳对物理学的热爱与执着。“要问研究中微子是否能让我们的生活更美好,完全没有这种作用。但是,我希望加深对这个宇宙和世界的理解。”

利用反应堆中微子实验测量θ13

当时国际中微子物理实验的前沿是精确测量中微子混合参数θ13。其重要性体现在θ13是中微子物理中两个最基本的未知参数之一,其数值的大小决定了未来中微子物理研究的发展方向。如果sin22θ13大于0.01左右,则中微子的CP相角可以测量,宇宙中物质与反物质的不对称可能得以解释。如果它太小,则中微子的CP相角极难测量,用中微子来解释宇宙中物质与反物质不对称的理论便难以证实。θ13接近于零也预示着新物理或一种新的对称性的存在。因此不论是测得θ13或只给出其上限值,均有极为重要的意义。与jia速qi实验相比,反应堆中微子实验可以毫不含糊地确定中微子混合参数θ13,具有造价低,速度快的优点。

大亚湾与岭澳核电站

大亚湾核电基地是我国目前在运行核电装机容量最大的核电基地。现有两个相距1公里的核电站:大亚湾核电站和岭澳核电站,共有六台百万千瓦级压水堆核电机组。

核电站在发电的同时,会产生大量的中微子。中微子振荡现象反应堆的功率越大,释放的中微子数就越多,实验精度就越高。距两个核电站约300米处即有高100米左右的山体,在2公里处有高400米左右的山体。这是一个得天独厚的地理条件。由于足够的岩石覆盖,山体下实验大厅里的宇宙线将减到很小,这是进行高精度中微子实验的一个重要前提。因此,大亚湾是世界上目前发现的最适合进行θ13实验的地方。

大亚湾中微子实验整体布局

实验方案

由于测量θ13具有重大科学意义,2003年前后国际上有7个国家提出了8个实验方案,最终进入建设阶段的共有3个:中国的大亚湾实验、法国的Double Chooz实验和韩国的RENO实验。

大亚湾实验的布局方案如图所示,共有3个实验大厅,分别为大亚湾近点、岭澳近点与远点大厅。实验厅均位于山腹内,由水平隧道相连。两个近点均位于地下100米深处,远点则位于地下350米处。每个实验厅内各有一套字宙线探测系统。中微子探测系统共有八个模块,两个近点各放置2个,远点放置4个。此外还有两个功能厅,用于液体闪烁体的混制、贮存和灌装,及水的净化处理。