线性回归分析 Python那些事Python环境下的8种简单线性回归算法!(2)
详细描述参考:https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
方法 4:numpy.linalg.lstsq
这是用矩阵因式分解来计算线性方程组的最小二乘解的根本方法。它来自 numpy 包中的线性代数模块。通过求解一个 x 向量(它将|| ba x ||的欧几里得 2-范数最小化),它可以解方程 ax=b。
该方程可能会欠定、确定或超定(即,a 中线性独立的行少于、等于或大于其线性独立的列数)。如果 a 是既是一个方阵也是一个满秩矩阵,那么向量 x(如果没有舍入误差)正是方程的解。
借助这个方法,你既可以进行简单变量回归又可以进行多变量回归。你可以返回计算的系数与残差。一个小窍门是,在调用这个函数之前,你必须要在 x 数据上附加一列 1,才能计算截距项。结果显示,这是处理线性回归问题最快速的方法之一。
详细描述参考:https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq
方法 5: Statsmodels.OLS ( )
statsmodel 是一个很不错的 Python 包,它为人们提供了各种类与函数,用于进行很多不同统计模型的估计、统计试验,以及统计数据研究。每个估计器会有一个收集了大量统计数据结果的列表。其中会对结果用已有的统计包进行对比试验,以保证准确性。
对于线性回归,人们可以从这个包调用 OLS 或者是 Ordinary least squares 函数来得出估计过程的最终统计数据。
需要记住的一个小窍门是,你必须要手动为数据 x 添加一个常数,以用于计算截距。否则,只会默认输出回归系数。下方表格汇总了 OLS 模型全部的结果。它和任何函数统计语言(如 R 和 Julia)一样丰富。
详细描述参考:
方法 6、7:使用矩阵求逆方法的解析解
对于一个良态(well-conditioned)线性回归问题(至少是对于数据点、特征),回归系数的计算存在一个封闭型的矩阵解(它保证了最小二乘的最小化)。它由下面方程给出:
在这里,我们有两个选择:
方法 6:使用简单矩阵求逆乘法。
方法 7:首先计算数据 x 的广义 Moore-Penrose 伪逆矩阵,然后将结果与 y 进行点积。由于这里第二个步骤涉及到奇异值分解(SVD),所以它在处理非良态数据集的时候虽然速度慢,但是结果不错。(参考:开发者必读:计算机科学中的线性代数)
详细描述参考:https://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29
方法 8: sklearn.linear_model.LinearRegression( )
这个方法经常被大部分机器学习工程师与数据科学家使用。然而,对于真实世界的问题,它的使用范围可能没那么广,我们可以用交叉验证与正则化算法比如 Lasso 回归和 Ridge 回归来代替它。但是要知道,那些高级函数的本质核心还是从属于这个模型。
详细描述参考:
以上方法的速度与时间复杂度测量
作为一个数据科学家,他的工作经常要求他又快又精确地完成数据建模。如果使用的方法本来就很慢,那么在面对大型数据集的时候便会出现执行的瓶颈问题。
一个判断算法能力可扩展性的好办法,是用不断扩大的数据集来测试数据,然后提取所有试验的执行时间,画出趋势图。线性回归分析
可以在 GitHub 查看这个方法的代码。下方给出了最终的结果。由于模型的简单性,stats.linregress 和简单矩阵求逆乘法的速度最快,甚至达到了 1 千万个数据点。
总结
作为一个数据科学家,你必须要经常进行研究,去发现多种处理相同的分析或建模任务的方法,然后针对不同问题对症下药。
在本文中,我们讨论了 8 种进行简单线性回归的方法。其中大部分方法都可以延伸到更一般的多变量和多项式回归问题上。我们没有列出这些方法的 R 系数拟合,因为它们都非常接近 1。
对于(有百万人工生成的数据点的)单变量回归,回归系数的估计结果非常不错。
这篇文章首要目标是讨论上述 8 种方法相关的速度/计算复杂度。我们通过在一个合成的规模逐渐增大的数据集(最大到 1 千万个样本)上进行实验,我们测出了每种方法的计算复杂度。令人惊讶的是,简单矩阵求逆乘法的解析解竟然比常用的 scikit-learn 线性模型要快得多。
说明你开始走下坡路了