傅科摆_傅科摆视频_傅科摆摆动轨迹图(2)
现在,考虑一种简单的情况,假如把傅科摆放置在北极点上,那么会发生什么情况呢?很显然,地球在自转——相对于遥远的恒星自转.同样,由于惯性,傅科摆的摆锤相对于遥远恒星的运动方向(平面)是不变的.(你可以想象,有三颗遥远的恒星确定了一个平面,而傅科摆恰好在这个平面内运动.由于惯性,当地球以及用来吊起摆锤的架子转动的时候,摆锤仍然在那个平面内运动)那么什么情况发生了呢?你站在傅科摆附近的地球表面上,显然会发现摆动的平面正在缓缓的转动,它转动的速度大约是钟表时针转动速度的一半,也就是说,每小时傅科摆都会顺时针转过15度.
摆在同面内运动,这里所说的平面是由远方的恒星确定的
如果把傅科摆放置赤道上呢?那样的话,我们将观察不到任何转动.把摆锤的运动看做一维谐振(单摆),由于它的运动方向与地轴平行,而地轴相对遥远的恒星是静止的,所以我们观测不到傅科摆相对地面的转动.
现在把傅科摆移回巴黎.摆锤的运动可以分解为沿地轴方向的和与之垂直方向上的两个分运动.后者会产生相对地面的旋转(正如北极的傅科摆).这两个分运动合成的结果是,从地面上的人看来,傅科摆以某种角速度缓慢的旋转——介于傅科摆在北极和赤道的角速度之间.(也可以从科里奥利力的角度解释,得出的结论是一样的)如果在北极的观测到傅科摆旋转一周的时间是A(A=24h),那么在任意纬度γ上,傅科摆旋转一周所需的时间是A/sinγ.对于巴黎,这个数字是31.8小时.
1819年,让·傅科生于巴黎.傅科从小喜欢动手做试验,最初傅科学习的是医学,后来才转行学习物理学.1862年,傅科使用旋转镜法成果的测定了光速为289 000km/s,这是当时相当了不起的成绩,因此他被授予了骑士二级勋章.此外,傅科还在实验物理方面做出了一些贡献.例如改进了照相术、拍摄到了钠的吸收光谱(但是解释是由基尔霍夫做出的).
傅科摆实验的第二年,即1852年,他制造出了回转仪(陀螺仪)——也就是现代航空、军事领域使用的惯性制导装置的前身.此外,他还发现了在磁场中的运动圆盘因电磁感应而产生涡电流,这被命名为“傅科电流”.当然,不能忘记的是傅科摆实验,因为这个非常简单的演示了地球自转现象的实验,傅科获得了荣誉骑士五级勋章.
傅科使用了如此巨大的摆是有道理的.由于地球转动的比较缓慢(相对摆的周期而言),需要一个比较长的摆线才能显示出轨迹的差异.由因为空气阻力的影响,这个系统必须拥有足够的机械能(一旦摆开始运动,就不能给它增加能量).所以傅科选择了一个28千克的铁球作为摆锤.此外,悬挂摆线的地方必须允许摆线在任意方向运动.傅科正是因为做到了这三点,才能成功地演示出地球的自转现象.
国葬院大厅的傅科摆(示意图)
现在,巴黎国葬院中依然保留着150年前傅科摆实验所用的沙盘和标尺.不仅仅是在巴黎,在世界各地你都可以看到傅科摆的身影,例如,你可以在北京天文馆看到一个傅科摆的复制品.
法国巴黎国葬院的大厅
当你有机会凝视这个缓慢转动着的傅科摆的时候,是否也会像伽利略——或者150年前观看傅科摆实验的观众那样——发出由衷的赞叹:“地球真的是在转动啊!
记住